

Lecture Notes in Artificial Intelligence 3397
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Tag Gon Kim (Ed.)

Artificial Intelligence
and Simulation

13th International Conference on AI, Simulation,
and Planning in High Autonomy Systems, AIS 2004
Jeju Island, Korea, October 4-6, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editor

Tag Gon Kim
Korea Advanced Institute of Science and Technology
Department of Electrical Engineering and Computer Science
373-1 Kusong-dong, Yusong-ku, Taejon, Korea 305-701
E-mail: tkim@ee.kaist.ac.kr

Library of Congress Control Number: 2004118149

CR Subject Classification (1998): I.2, I.6, C.2, I.3

ISSN 0302-9743
ISBN 3-540-24476-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11382393 06/3142 5 4 3 2 1 0

Preface

The AI, Simulation and Planning in High Autonomy Systems (AIS) 2004 Con-
ference was held on Jeju Island, Korea, October 4–6, 2004. AIS 2004 was the
thirteenth in the series of biennial conferences on AI and simulation. The confer-
ence provided the major forum for researchers, scientists and engineers to present
the state-of-the-art research results in the theory and applications of AI, simu-
lation and their fusion. We were pleased that the conference attracted a large
number of high-quality research papers that were of benefit to the communities
of interest.

This volume is the proceedings of AIS 2004. For the conference full-length
versions of all submitted papers were refereed by the respective international pro-
gram committee, each paper receiving at least two independent reviews. Careful
reviews from the committee selected 77 papers out of 170 submissions for oral
presentation. This volume includes the invited speakers’ papers, along with the
papers presented in the conference.

In addition to the scientific tracks presented, the conference featured keynote
talks by two invited speakers: Bernard Zeigler (University of Arizona, USA)
and Norman Foo (University of New South Wales, Australia). We were grateful
to them for accepting our invitation and for their talks. We also would like
to express our gratitude to all contributors, reviewers, program committee and
organizing committee members who made the conference very successful. Special
thanks are due to Tae-Ho Cho, the Program Committee Chair of AIS 2004 for
his hard work in the various aspects of conference organization.

Finally, we would like to acknowledge partial financial support by KAIST for
the conference. We also would like to acknowledge the publication support from
Springer.

November 2004 Tag Gon Kim

Conference Officials

Committee Chairs

Honorary Chair Bernard P. Zeigler
(University of Arizona, USA)

General Chair Tag Gon Kim (KAIST, Korea)
Program Chair Tae-Ho Cho

(Sungkyunkwan University, Korea)

Organizing Committee

Sung-Do Chi, Hankuk Aviation University, Korea
Jong-Sik Lee, Inha University, Korea
Jang-Se Lee, Korea Maritime University, Korea
Young-Kwan Cho, ROK Air Force HQ, Korea
Fernando J. Barros, University of Coimbra, Portugal
Hessam Sarjoughian, Arizona State University, USA
Shingo Takahashi, Waseda University, Japan
Adelinde Uhrmacher, University of Rostock, Germany
Ryo Sato, University of Tsukuba, Japan

Program Committee

Jacob Barhen, Oak Ridge National Laboratory, USA
Agostino Bruzzone, Università degli Studi di Genova, Italy
Luis Camarinha-Matos, New University of Lisbon/Univova, Portugal
François E. Cellier, University of Arizona, USA
Etienne Dombre, LIRMM, France
Cuneyd Firat, ITRI of Tubitak-Marmara, Turkey
Paul Fishwick, University of Florida, USA
Norman Foo, University of South Wales, Australia
Claudia Frydman, DIAM-IUSPIM, France
Erol Gelenbe, University of Central Florida, USA
Sumit Ghosh, Stevens Institute of Technology, USA
Norbert Giambiasi, DIAM-IUSPIM, France
Mark Henderson, Arizona State University, USA
David Hill, Blaise Pascal University, France
Mehmet Hocaoglu, ITRI of Tubitak-Marmara, Turkey
Syohei Ishizu, Aoyama Gakuin University, Japan
Mohammad Jamshidi, ACE/University of New Mexico, USA
Andras Javor, Technical University of Budapest, Hungary

Organization VII

Clyff Joslyn, Los Alamos National Laboratory, USA
Sergio Junco, Universidad Nacional de Rosario, Argentina
Sung-Hoon Jung, Hansung University, Korea
Roberto Kampfner, University of Michigan-Dearborn, USA
Mike Kamrowski, Raytheon Company, USA
Heong-Shik Kim, Inje University, Korea
Hyung-Jong Kim, Korea Information Security Agency, Korea
Ki-Hyung Kim, Yeungnam University, Korea
Young-Chan Kim, Hanvat University, Korea
Christopher Landauer, The Aerospace Corporation, USA
Kyou Ho Lee, ETRI, Korea
Axel Lehman, Universitaet der Bundeswehr Muenchen, Germany
Mike Lightner, AEgis Technologies, USA
Dell Lunceford, Army Model and Simulation Office, USA
Iván Melgrati, Universidad Tecnologica Nacional, Argentina
Teresa Mendes, University of Coimbra, Portugal
Alexander Meystel, NIST/Drexel University, USA
Anil Nerode, Cornell University, USA
Tuncer Ören, University of Ottawa, Canada
Mustapha Ouladsine, DIAM-IUSPIM, France
Ernest Page, MITRE, USA
Hyu-Chan Park, Korea Maritime University, Korea
Michael Pidd, Lancaster University, UK
Herbert Praehofer, Johannes Kepler University, Austria
Larry Reeker, NIST, USA
Jerzy Rozenblit, University of Arizona, USA
Bob Strini, Emerging Business Solutions, USA
Helena Szczerbicka, University of Bremen, Germany
Luis Valadares Tavares, Technical University of Lisbon, Portugal
Hamid Vakilzadian, University of Nebraska, USA
Maria J. Vasconcelos, Tropical Research Institute, Portugal
Gabriel Wainer, Carleton University, Canada

Table of Contents

Keynotes

Continuity and Change (Activity) Are Fundamentally Related
in DEVS Simulation of Continuous Systems . 1

Bernard P. Zeigler, Rajanikanth Jammalamadaka,
and Salil R. Akerkar

Systems Theory: Melding the AI and Simulation Perspectives 14
Norman Foo and Pavlos Peppas

Modeling and Simulation Methodologies I

Unified Modeling for Singularly Perturbed Systems by Delta Operators:
Pole Assignment Case . 24

Kyungtae Lee, Kyu-Hong Shim, and M. Edwin Sawan

A Disaster Relief Simulation Model of a Building Fire 33
Manabu Ichikawa, Hideki Tanuma, Yusuke Koyama,
and Hiroshi Deguchi

Evaluation of Transaction Risks of Mean Variance Model Under Identical
Variance of the Rate of Return – Simulation in Artificial Market 42

Ko Ishiyama, Shusuke Komuro, Hideki Tanuma, Yusuke Koyama,
and Hiroshi Deguchi

Intelligent Control

Association Rule Discovery in Data Mining
by Implementing Principal Component Analysis . 50

Bobby D. Gerardo, Jaewan Lee, Inho Ra, and Sangyong Byun

Reorder Decision System Based on the Concept of the Order Risk
Using Neural Networks . 61

Sungwon Jung, Yongwon Seo, Chankwon Park, and Jinwoo Park

Simulation Modeling with Hierarchical Planning:
Application to a Metal Manufacturing System . 71

Mi Ra Yi and Tae Ho Cho

X Table of Contents

Computer and Network Security I

Vulnerability Modeling and Simulation
for DNS Intrusion Tolerance System Construction . 81

Hyung-Jong Kim

NS-2 Based IP Traceback Simulation
Against Reflector Based DDoS Attack . 90

Hyung-Woo Lee, Taekyoung Kwon, and Hyung-Jong Kim

Recognition of Human Action for Game System . 100
Hye Sun Park, Eun Yi Kim, Sang Su Jang, and Hang Joon Kim

The Implementation of IPsec-Based Internet Security System
in IPv4/IPv6 Network . 109

So-Hee Park, Jae-Hoon Nah, and Kyo-Il Chung

HLA and Simulator Interoperation

Describing the HLA Using the DFSS Formalism . 117
Fernando Barros

Proposal of High Level Architecture Extension . 128
Jae-Hyun Kim and Tag Gon Kim

High Performance Modeling for Distributed Simulation 138
Jong Sik Lee

The Hierarchical Federation Architecture
for the Interoperability of ROK and US Simulations . 147

Seung-Lyeol Cha, Thomas W. Green, Chong-Ho Lee, and Cheong Youn

Manufacturing

PPSS: CBR System for ERP Project Pre-planning . 157
Suhn Beom Kwon and Kyung-shik Shin

A Scheduling Analysis in FMS Using the Transitive Matrix 167
Jong-Kun Lee

Simulation of Artificial Life Model in Game Space . 179
Jai Hyun Seu, Byung-Keun Song, and Heung Shik Kim

An Extensible Framework
for Advanced Distributed Virtual Environment on Grid 188

Seung-Hun Yoo, Tae-Dong Lee, and Chang-Sung Jeong

Table of Contents XI

Agent-Based Modeling

Diffusion of Word-of-Mouth in Segmented Society:
Agent-Based Simulation Approach . 198

Kyoichi Kijima and Hisao Hirata

E-mail Classification Agent
Using Category Generation and Dynamic Category Hierarchy 207

Sun Park, Sang-Ho Park, Ju-Hong Lee, and Jung-Sik Lee

The Investigation of the Agent in the Artificial Market 215
Takahiro Kitakubo, Yusuke Koyama, and Hiroshi Deguchi

Plan-Based Coordination of a Multi-agent System
for Protein Structure Prediction . 224

Hoon Jin and In-Cheol Kim

DEVS Modeling and Simulation

Using Cell-DEVS for Modeling Complex Cell Spaces 233
Javier Ameghino and Gabriel Wainer

State Minimization of SP-DEVS . 243
Moon Ho Hwang and Feng Lin

DEVS Formalism: A Hierarchical Generation Scheme 253
Sangjoon Park and Kwanjoong Kim

Modeling and Simulation Methodologies II

Does Rational Decision Making Always Lead to High Social Welfare? 262
Naoki Konno and Kyoichi Kijima

Large-Scale Systems Design:
A Revolutionary New Approach in Software Hardware Co-design 270

Sumit Ghosh

Timed I/O Test Sequences for Discrete Event Model Verification 275
Ki Jung Hong and Tag Gon Kim

Parallel and Distributed Modeling and Simulation I

A Formal Description Specification for Multi-resolution Modeling (MRM)
Based on DEVS Formalism . 285

Liu Baohong and Huang Kedi

XII Table of Contents

Research and Implementation of the Context-Aware Middleware
Based on Neural Network . 295

Jong-Hwa Choi, Soon-yong Choi, Dongkyoo Shin, and Dongil Shin

An Efficient Real-Time Middleware Scheduling Algorithm
for Periodic Real-Time Tasks . 304

Ho-Joon Park and Chang-Hoon Lee

Mapping Cooperating GRID Applications
by Affinity for Resource Characteristics . 313

Ki-Hyung Kim and Sang-Ryoul Han

Mobile Computer Network

Modeling of Policy-Based Network with SVDB . 323
Won Young Lee, Hee Suk Seo, and Tae Ho Cho

Timestamp Based Concurrency Control in Broadcast Disks Environment . . 333
Sungjun Lim and Haengrae Cho

Active Information Based RRK Routing for Mobile Ad Hoc Network 342
Soo-Hyun Park, Soo-Young Shin, and Gyoo Gun Lim

Web-Based Simulation, Natural System

Applying Web Services and Design Patterns
to Modeling and Simulating Real-World Systems . 351

Heejung Chang and Kangsun Lee

Ontology Based Integration of Web Databases
by Utilizing Web Interfaces . 360

Jeong-Oog Lee, Myeong-Cheol Ko, and Hyun-Kyu Kang

A Web Services-Based Distributed Simulation Architecture
for Hierarchical DEVS Models . 370

Ki-Hyung Kim and Won-Seok Kang

Modeling and Simulation Environments

Automated Cyber-attack Scenario Generation
Using the Symbolic Simulation . 380

Jong-Keun Lee, Min-Woo Lee, Jang-Se Lee, Sung-Do Chi,
and Syng-Yup Ohn

A Discrete Event Simulation Study for Incoming Call Centers
of a Telecommunication Service Company . 390

Yun Bae Kim, Heesang Lee, and Hoo-Gon Choi

Table of Contents XIII

Requirements Analysis and a Design of Computational Environment
for HSE (Human-Sensibility Ergonomics) Simulator . 400

Sugjoon Yoon, Jaechun No, and Jon Ahn

AI and Simulation

Using a Clustering Genetic Algorithm to Support Customer Segmentation
for Personalized Recommender Systems . 409

Kyoung-jae Kim and Hyunchul Ahn

System Properties of Action Theories . 416
Norman Foo and Pavlos Peppas

Identification of Gene Interaction Networks
Based on Evolutionary Computation . 428

Sung Hoon Jung and Kwang-Hyun Cho

Component-Based Modeling

Modeling Software Component Criticality
Using a Machine Learning Approach . 440

Miyoung Shin and Amrit L. Goel

Component Architecture Redesigning Approach
Using Component Metrics . 449

Byungsun Ko and Jainyun Park

A Workflow Variability Design Technique
for Dynamic Component Integration . 460

Chul Jin Kim and Eun Sook Cho

Watermarking, Semantic

Measuring Semantic Similarity
Based on Weighting Attributes of Edge Counting . 470

JuHum Kwon, Chang-Joo Moon, Soo-Hyun Park, and Doo-Kwon Baik

3D Watermarking Shape Recognition System
Using Normal Vector Distribution Modelling . 481

Ki-Ryong Kwon, Seong-Geun Kwon, and Suk-Hwan Lee

DWT-Based Image Watermarking for Copyright Protection 490
Ho Seok Moon, Myung Ho Sohn, and Dong Sik Jang

Cropping, Rotation and Scaling Invariant LBX Interleaved
Voice-in-Image Watermarking . 498

Sung Shik Koh and Chung Hwa Kim

XIV Table of Contents

Parallel and Distributed Modeling and Simulation II

Data Aggregation for Wireless Sensor Networks
Using Self-organizing Map . 508

SangHak Lee and TaeChoong Chung

Feasibility and Performance Study
of a Shared Disks Cluster for Real-Time Processing . 518

Sangho Lee, Kyungoh Ohn, and Haengrae Cho

A Web Cluster Simulator for Performance Analysis
of the ALBM Cluster System . 528

Eunmi Choi and Dugki Min

Dynamic Load Balancing Scheme Based on Resource Reservation
for Migration of Agent in the Pure P2P Network Environment 538

Gu Su Kim, Kyoung-in Kim, and Young Ik Eom

Visualization, Graphics and Animation I

Application of Feedforward Neural Network
for the Deblocking of Low Bit Rate Coded Images . 547

Kee-Koo Kwon, Man-Seok Yang, Jin-Suk Ma, Sung-Ho Im,
and Dong-Sun Lim

A Dynamic Bandwidth Allocation Algorithm
with Supporting QoS for EPON . 556

Min-Suk Jung, Jong-hoon Eom, Sang-Ryul Ryu, and Sung-Ho Kim

A Layered Scripting Language Technique
for Avatar Behavior Representation and Control . 565

Jae-Kyung Kim, Won-Sung Sohn, Beom-Joon Cho, Soon-Bum Lim,
and Yoon-Chul Choy

An Integrated Environment Blending Dynamic and Geometry Models 574
Minho Park and Paul Fishwick

Computer and Network Security II

Linux-Based System Modelling for Cyber-attack Simulation 585
Jang-Se Lee, Jung-Rae Jung, Jong-Sou Park, and Sung-Do Chi

A Rule Based Approach to Network Fault and Security Diagnosis
with Agent Collaboration . 597

Siheung Kim, Seong jin Ahn, Jinwok Chung, Ilsung Hwang,
Sunghe Kim, Minki No, and Seungchung Sin

Table of Contents XV

Transient Time Analysis of Network Security Survivability Using DEVS . . 607
Jong Sou Park and Khin Mi Mi Aung

A Harmful Content Protection in Peer-to-Peer Networks 617
Taekyong Nam, Ho Gyun Lee, Chi Yoon Jeong, and Chimoon Han

Business Modeling

Security Agent Model Using Interactive Authentication Database 627
Jae-Woo Lee

Discrete-Event Semantics for Tools for Business Process Modeling
in Web-Service Era . 635

Ryo Sato

An Architecture Modelling of a Workflow Management System 645
Dugki Min and Eunmi Choi

Client Authentication Model
Using Duplicated Authentication Server Systems . 655

Jae-Woo Lee

Visualization, Graphics and Animation II

Dynamic Visualization of Signal Transduction Pathways
from Database Information . 663

Donghoon Lee, Byoung-Hyun Ju, and Kyungsook Han

Integrated Term Weighting, Visualization, and User Interface Development
for Bioinformation Retrieval . 673

Min Hong, Anis Karimpour-Fard, Steve Russell, and Lawrence Hunter

CONDOCS: A Concept-Based Document Categorization System
Using Concept-Probability Vector with Thesaurus . 683

Hyun-Kyu Kang, Jeong-Oog Lee, Heung Seok Jeon, Myeong-Cheol Ko,
Doo Hyun Kim, Ryum-Duck Oh, and Wonseog Kang

DEVS Modeling and Simulation

Using DEVS for Modeling and Simulation of Human Behaviour 692
Mamadou Seck, Claudia Frydman, and Norbert Giambiasi

Simulation Semantics for Min-Max DEVS Models . 699
Maâmar El-Amine Hamri, Norbert Giambiasi, and Claudia Frydman

Author Index . 709

zeigler@ece.arizona.edu
www.acims.arizona.edu

+= −

=τ

+ −

=

=

=

=

∗= ≥

Δ
Δ

−

= =

= = = =
=

=
=

+

+= −

+= −

= ⊆

+ + + +

+ +> > > + +≥ ≥ ≥

= −

=

+= −

′ ′⊇
′

′ ′≥

′ ′ ′

+ + +′< < + + ′ ′− ≤ − + −

′ ′

+′< < + +′ ∈

′ ′

′ ′=
′

′ ′≤

= = Δ

+ = + Δ = − Δ

Δ
= =

+ − = = −

= = Δ

Δ

Δ =

→

∈ =
⊇

=

′ ′

+= = −

′
′ =
′ ≤

∈

+ +

+− +

= ∈

=

Δ
≈ Δ

+ + −

+ +′− ≈ − ′

Δ

= ≈ ≤ = =

=

Δ

= ≈ ≤
∗

ω= =
ω

π ω
=

π π
≤ ≤ ≤ ≤

= = Δ

=

≈

≥ − −

− ≥ −−
−−

−

− +

=

−

→∞

−
−

=

ω π
ω

ω
π

ω
π

− −− −−

−

→∞

−

=

= =
= =

•
• = = →

= =

= =

=

= = −

=

τ τ=

•

•

•

•

•

Systems Theory:
Melding the AI and Simulation Perspectives

Norman Foo1 and Pavlos Peppas2

1 National ICT Australia, and The School of Computer Science and Engineering,
University of New South Wales, Sydney NSW 2052, Australia

norman@cse.unsw.edu.au
2 Dept of Business Administration, University of Patras, Patras, 26 500, Greece

ppeppas@otenet.gr

Abstract. The discipline of modelling and simulation (MaS) preceded artificial
intelligence (AI) chronologically. Moreover, the workers in one area are typically
unfamiliar with, and sometimes unsympathetic to, those in the other. One rea-
son for this is that in MaS the formal tools tend to center around analysis and
probability theory with statistics, while in AI there is extensive use of discrete
mathematics of one form or another, particularly logic. Over the years however,
MaS and AI developed many frameworks and perspectives that are more similar
than their respective practitioners may care to admit. We will argue in this paper
that these parallel developments have led to some myopia that should be over-
come because techniques and insights borrowed from the other discipline can be
very beneficial.

1 Introduction

The mathematical modelling of dynamic systems began with classical mechanics us-
ing differential equations, and analog computers were heavily used to compute so-
lutions to these equations. Serious work on the modelling of systems that were not
primarily governed or describable by differential equations did not take off until the
advent of digital computers. Since then many frameworks have been proposed and im-
plemented. Foremost among the the ones that are based on discrete events is DEVS
[Zeigler, et.al. 2000]. The theory underpinning uses classical notions from automata
theory, but overlays it with ideas from simulation processes and object orientation. Its
meta-theory has debts to the philosophy of science, but strikes out in new directions.
Parallel to this work was that of artificial intelligence logics [Reiter 01]. These logics
were designed with the goal of imbuing robots with reasoning facilities about the real
world. It should not suprise anyone that the two disciplines often invented the same
ideas separately, but regretfully they seldom communicated. Because of this insularity
the good ideas from one were not transmitted to the other.

This paper is an attempt to begin the bridging of this intellectual gap.

2 Philosophy of Systems

Zeigler’s pioneering work on a philosophy of systems, simulation and fundamental is-
sues about correctness and adequacy of models in the early 70s that eventually led to a

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 14–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Systems Theory: Melding the AI and Simulation Perspectives 15

formal framework called DEVS. This has been very influential in the modelling and sim-
ulation community and beyond, and a contemporary summary of DEVS and its back-
ground is [Zeigler, et.al. 2000]. We use the word philosophy without apology. Math-
ematical systems theory had, until Zeigler’s intervention, been an erudite yet arcane
field populated by people of subtle formal sophistication. However, meta-modelling
questions like when is a particular kind of model suitable, and what is meant by the
correctness of a model, were not usually asked. After Zeigler’s work, such questions
became meaningful and routine. It is only recently that a parallel development arose in
AI, in the work of Sandewall [Sandewall 95].

At this point we hope the reader will forgive a bit of digression into personal history.
Zeigler imparted his philosophy about modelling to the first author, NF, who completed
a doctoral dissertation [Foo 74] in this area under his supervision. In turn NF imparted
the central themes of this philosophy to the second author, PP, while he was completing
his doctoral dissertation [Peppas 93] in the AI logic of actions with NF as co-supervisor.
It is this pedigree, together with the intervening years in which we (NF and PP) were
active in the AI community but without forgetting our roots in systems philosophy of
the Zeigler variety, that we believe qualifies us to draw attention to the parallels between
MaS and AI.

3 Real Systems, Base Systems, etc.

In this section we explicate the terms that are used in the rest of the paper. Some which
will be familiar to the DEVS community were introduced by Zeigler in his philosophy
of systems – Base System, Lumped System, Experimental Frame – and we essentially
retain his meanings for them1. The other terms are part of our attempt to re-work and
refine the original Zeigler concepts to accommodate AI perspectives to meld similar
notions in MaS and AI.

It is critical at the outset to clarify the terms model and theory. According to tra-
ditional scientific usage, a model is some formal “mirror” of a portion of the external
world, and often comes with some inferential machinery. Unfortunately, this is also ex-
actly what is called a theory in AI, a convention2 adopted from mathematical logic.
In this convention a model is a set-theoretic structure that satisfies the formulas of the
theory.

In figure 1 the “real world” is represented as RS. Out of this amorphous entity
(whatever it is!) we select a portion of interest to us. Then we conceive of a set of input-
output experiments of interest on that portion; this can be viewed abstractly as a relation
between input and output trajectories over time (or if time is irrelevant just a relation
between input and output). As experiments delineate what one can observe or measure,
this restriction on what experiments one is prepared to perform is aptly called the Ex-
perimental Frame by the MaS community, and the conceptualized set of input-output
trajectories is just as aptly called the Base System. The Base System is represented as
BS in the figure, and it determines the observational language that describe the obser-
vations or measurements associated with the inputs and outputs of the experiments. T

1 We are however responsible for any distortion of his interpretation that is unpalatable.
2 This is also the usage in physics to describe generic axioms, as in electromagnetic theory.

16 Norman Foo and Pavlos Peppas

(plus conditions)

trajectories

output
trajectories

M2

M3

M1

Base System: BS

time

Models of T: Mod(T)
(Lumped Models)

morphismsvalidations

selection

"Real System": RS

theory formation

model satisfaction

Theory of Base System: T

input

Fig. 1. Theories, Models and Systems.

is an attempt at a formal theory of BS and may contain hidden variables (also called
theoretical terms if they are explicitly named) that do not occur in BS. Thus, this theory
T is what less formal practitioners call a model. Here we suggest a distinction between
T and the mathematical structures that satisfy T , called the models of T in the termi-
nology of logic, and denoted by Mod(T). There could conceivably be more than one
such model; we propose to identify any such model M , M ∈ Mod(T) with the Zeigler
concept of a lumped system. These models M (in the logical sense) of T will hope-
fully match many of the input-output experiments of BS, the ideal case being that T
has exactly one model M which faithfully reproduces the trajectory pairs in BS. More
generally, however, each model M of T is faithful to BS with respect to specialized
criteria or conditions. We will say more about those conditions below.

Figure 1 also indicates the relationships among the depicted entities which we now
describe. Some are taken directly from the MaS terminology.

Selection. As described above this is driven by the goals of the modelling enterprise. It
is informal. A system that is ostensibly “simple” to one modeller can be “complex”
to another, e.g., the parable of a stone to a lay observer in contrast to a geologist.

Theory Formation. The theory T is usually crafted by accessing parts of BS, through
active experiment, passive observation, inductive learning, inspired guesswork, or
a combination of these and iterations thereof. In MaS this is taken for granted as
having been done, but this relation is at the heart of much of AI, particularly that
branch which has to do with machine learning. In traditional engineering the area of
systems identification is an example of a highly restricted kind of machine learning
to fill in parameters of an already assumed form of the theory.

Systems Theory: Melding the AI and Simulation Perspectives 17

Model Satisfaction. The models M of T are mathematical objects with the property
that every sentence of T is true in M , a relation that is denoted by M |= T , read as
“M satisfies T ”. An example of two models may that satisfy a given theory is one
which has a finite state space and another which has an infinite state space3. If one
were given some hypothetical structure M ′, it may or may not be an easy task to
see if T |= M ′. The intensive effort in AI to find efficient algorithms to do this is
called model checking, and it has lessons for MaS that we will indicate below.

Morphism. This is the well-known MaS relation between the base and lumped models,
and since we have identified lumped models with Mod(T), the assumption is that
for each M ∈ Mod(T) there is a different morphism representing a different kind
of simplification of the base model.

Validation. Validation is the comparison of a model M (of T) with experiments in
BS. Since BS is fixed for a given experimental frame, the validation of each M
with respect to BS has to vary in criteria. The different criteria correspond to the
different morphisms that relate BS to each M in Mod(T).

So where in our layout does the MaS work on hierarchies of system morphisms
and the conditions under which validation can climb up hierarchies properly reside?
We suggest that these justifying conditions are really additions to the theory T. This
accords with a well-known result in logic, viz., Mod(T ∪ {α}) ⊆ Mod(T). Thus, we
might begin with an initial theory T that is relatively permssive in having two models
M1 and M2, e.g., M1 is just a set of input-output trajectories like BS whereas M2

has internal state structure. As a justifying condition α that formalizes the existence of
states is added, M1 is eliminated from consideration for validation for the trivial reason
that it is not a model of T ∪ {α} because it cannot interpret α. This is a useful way
to think about what is formally entailed by moving up hierarchies, that is really about
successive tightening of the criteria to remain a satisfying model.

We believe that this framework is able to accommodate all meta-level questions
about modelling of interest to both the MaS and AI communities. The remainder of the
paper comprises arguments for this belief.

4 Dynamic Systems in AI

In the last two decades AI logicians have worried about problems of exception han-
dling that appear to be easy for human commonsense but difficult for formal logic.
The prototypical example of this in a static domain is when a person is informed that
Tweety is a bird, and asked if Tweety can fly. A “normal” answer is Yes. But this is
not justified by any simple classical logic for the reason that the informal “rule” that
the person has used cannot be simply Bird(X) → Fly(X) together with the fact
Bird(Tweety), for it may well be the case that Tweety is an emu. This gave rise to
non-monotonic logic, NML for short. A version of this is the re-formalization of the
preceding as Bird(X)∧¬Abnormal(X)→ Fly(X), and a list of what kinds of birds
are abnormal, e.g., Abnormal(Emu), Abnormal(Kiwi). This blocks the inference
that Tweety flies if one is also told that Tweety is an emu, but in the absence of that

3 It is easy to write simple theories that do not restrict models to either property.

18 Norman Foo and Pavlos Peppas

additional information, the inference goes through, provided that we add a meta-rule
saying that unless something can be proved to be abnormal it is not so. The latter is
what makes the logic non-classical and it is in fact an instance of Prolog’s negation as
finite failure.

In this paper however, we are interested in dynamic domains. There is a corre-
sponding logic for such domains, and it is there that the interesting parallels with MaS
formalisms occur. The AI literature for dynamic systems, like that for static systems,
uses the vocabulary of classical logic with inferential rules enhanced with meta-rules
that make the logic non-monotonic. A prototypical example is a series battery-driven
circuit with two switches that can be either open or closed, and they power a light. The
formalization of this simple setting can be done in language of propositional logic, with
sw1 and sw2 to denote the switches and light to denote the light. Although they look
like propositions and in the technical treatment in one level they behave like them, it
is customary in NML to call them fluents. A logical formalism that is commonly used
in NML is the situation calculus [Reiter 01] in which situation terms denote sequences
of actions, e.g., the sequential actions of closing switches 1 and 2, then opening si-
wtch 1 is represented as Do(Open1, (Do(Close2, (Do(Close1, S0))) where S0 is an
initial situation and the names of the actions are as expected. We need a way to say
what configurations hold in the initial (or indeed any situation). For this a predicate
Holds(F, S) is introduced to encode the assertion that fluent F holds (is true) in situ-
ation S. Hence ¬Holds(sw1, S0) ∧Holds(sw2, S0) essentially says that in the initial
situation S0 switch 1 is open and switch 2 is closed, which fixes our convention here
of what configuration (open, closed) we associate with the Boolean true for the flu-
ents. A constraint C that captures the naive physics of this circuit can be written as
Holds(sw1, S) ∧Holds(sw2, S) → Holds(light, S). Suppose we begin with initial
situation S0 as above and perform the action of closing switch 1. Presumably we only
need to specify this action by its effect on the proposition that represents that switch,
viz., Holds(sw1, Do(Close1, S)). We hope that this will suffice to infer that after the
action the light will be on, i.e., we can infer Holds(light, Do(Close(sw1, S0)). Unfor-
tunately the logic specified so far cannot do that unless we also say that closing switch 1
does not affect switch 2! The latter is the essence of inertia, which can be formalized
at a meta-level, and is non-monotonic. The formal way in which such inertia is actually
captured is through Frame Axioms. Let us see how this is done in the circuit exam-
ple here. The frame axiom Holds(sw2, Do(Close1, S))↔ Holds(sw2, S)) says that
closing switch 1 does not affect switch 2; there is a dual one for closing switch 2. By
adding these to the rule, initial state and action specification above, we can now infer
Holds(light, Do(Close1, S0)). If such a simple system demands two frame axioms,
then what horrors might await us in more complex systems? This is the legendary Frame
Problem.

At this point MaS readers can be forgiven for thinking that logic is simply not the
appropriate methodology for reasoning about such systems. It is trivial to represent
such a circuit in DEVS and the computation of effects of actions in it is equally trivial
with guaranteed correctness. Moreover, constraints like C above are easily captured in
DEVS with the variable influence relation. This is a correct objection, but not because

Systems Theory: Melding the AI and Simulation Perspectives 19

logicians are a perverse lot. Logic has its place, as we shall argue later. It is important
to draw the right lesson here. It is this:

DEVS specified systems implicitly assume full inertia, as do all formally specified
engineering systems.

This is true of differential equation specified systems, of automata, and all the fa-
miliar systems with an engineering flavor. A corollary is this: Mathematical theories of
engineering systems do not have a frame problem.

If one thinks about it more carefully from the computational perspective, it is pre-
cisely full inertia (or equivalently the lack of a frame problem) that permits DEVS state
update to be efficient and intuitive. External events are one kind of actions, and internal
events are another. Formal specifications say exactly which variables events affect, and
it is assumed that no others are affected. In a simulation, which is really successive state
updates, the unaffected variables are “carried forward” with no change to the new state.
The second lesson is therefore this:

A “balance-carried-forward” state updating is correct if and only if a system is
fully inertial.

This is where AI stands to benefit from MaS. If it is known that a dynamic system
is inertial with respect to its theoretically specified actions, then the obvious lesson is
Do Not Use Logic – Use DEVS instead. There is in fact an ancient4 AI formalism called
STRIPS [Fikes and Nilsson 71] that is only correct for inertial systems. It is hardly logic
even though it uses the vocabulary of logic, but the most telling feature of STRIPS is
that it uses a “balance-carried-forward” state update procedure called add and delete
lists. A persuasive case can be made that in fact STRIPS is DEVS in disguise.

5 Query Answering and Planning in AI

In the previous section we identified a class of systems for which DEVS-like theories
offer superior computational answers compared with AI logics. On the other hand AI
logics has developed techniques for special tasks that should be seriously considered by
MaS workers.

One of this is the specialized area of query answering. Here is a toy example that il-
lustrates the main points. Suppose we have a blocks world of blocks B1,B2,B3, . . . ,BN .
The atom On(A, B) means that block A is on block B, and the atom Table(A) means
the block A is on the (very large) table. The only actions are to move a block from one
position to another, e.g., Move(C, D) means to pick up block C (assuming there is no
block on it) and put it on block D (assuming there is no block on it), and Unstack(B)
means to pick up block B (assuming there is no block on it) and put it on the table.
After a sequence of such actions starting from some initial configuration, some queries
that may be of interest are: “where is block B now?”, or “how many blocks are on top
of block B?”. Other forms of queries may be like “Explain how block B1 came to be
above block B3?”

Another area is planning. We can use the same blocks world domain to illustrate
the key point. Starting with some configuration S we wish to arrive at another configu-
ration S′. A sequence of actions that will take us from S to S′ is called a plan. Usually

4 In AI this means older than 30 years.

20 Norman Foo and Pavlos Peppas

we are interested in not just any plan but one that satisfies some optimality criterion like
a shortest plan.

AI action logics of the kind explained in section 4, often using the situation calculus,
is good for both query answering and planning. They achieve implementation efficiency
by a number of insights, one of which appeals to localness. To understand this, consider
the query in the blocks world “where is block B now?”. It is not hard to see that we
do not need to consider the entire action sequence from the beginning, but only the
subsequence that can possibly affect the location of block B, i.e., those movements
that either move B, or put something on it, etc. In other words, to answer a query we
can often localize the extent of the system and its history that has to be examined.
This insight is widespread in AI planning as well, and the very active work in model
checking is about using clever data structures and algorithms to exploit localness. Now
contrast this with what one has to do if the system is captured in a DEVS-like setting.
To answer a query we have to run the entire system until we complete the simulation
of the action sequence. Along the way a lot of computation is done to produce state
updates on objects that cannot possibly aid in answering the query. Likewise, if we use
simulation to devise plans, we either have to re-run the system many times, or else find
ways to meta-program the system to discover action sequences that achieve the desired
configuration. The lesson from this is:

In query answering or planning, use AI logics when possible.
However this also suggests a direct importation of some facility into MaS frame-

works to do “local” simulations to mimic the efficiency of the AI logics for these pur-
poses.

6 Correctness and Galois Correspondence

In this section we re-examine the question of what it means for a theory (with its asso-
ciated calculus – logic, differential equations, DEVS, etc) to be correct.

It does not take much reflection to see that in the framework shown in figure 1
a necessary condition for correctness is that each model M of T does not produce
misleading results, i.e., any prediction, inference, etc. L of M is actually in BS, where
typically L is an input-output pair of trajectories. More formally we can write this as:
For all M M |= L ⇒ L ∈ BS. This is equivalent to saying that every provable fact L
of T is also true in BS. This property is usually called the soundness of T (with respect
to BS). But we also require a sufficiency condition, that if L is in BS then our models
will say so, i.e., for every M L ∈ BS ⇒ M |= L, or equivalently that any L in BS is
provable in T . This is usually called the adequacy or completeness of T (with respect
to BS). Both conditions are desired by MaS and AI workers for their computational
realizations of T with respect to their experimental frames.

However, it may be the case that we have a theory T that is unnecessarily powerful
in the sense that it also provides correct answers for a much larger class of experiments
than BS, i.e., it also handles a wider experimental frame. Although this does no harm it
may come at the cost of more elaborate computation. So, what might it mean for T to be
“just correct and no more” with respect to some BS? If it is just a single selected system
from the “real system” resulting in a particular experimental frame, we already have an

Systems Theory: Melding the AI and Simulation Perspectives 21

answer above – that T has to be sound and complete. To see how we can broaden this
question, consider the modelling and simulation of an entire class of systems, e.g., the
inertial systems discussed in section 4. For a more practical example, consider railroad
systems. Each particular railroad that we model will have its own rail network, freight
cars, schedules, etc. But they all belong to a class and share features and procedures.
It makes sense to design a theory T that can accommodate any instance of this class
rather than just one case. But it also makes sense to not consciously design a T that
happens to work for instances of other classes, e.g., an ocean transport network. Thus
the fundamental object for conceptualized experiments is not just one base system BS
but a class BS of base systems, and it is for this class that we may have to design a
theory T to handle. Ideally, what we want for T is the set of truths (trajectory pairs in
particular) common to all the base systems in BS. A way of writing this is Th(BS) =
T , where the operator Th() “extracts” the common truths. But in order that T should be
“just correct and no more” we need Mod(T) = BS, for this guarantees that T will not
work outside the members of the class BS. To paraphrase the latter, it says that if some
base system BS′ is not in BS, then T will make some wrong prediction, inference,
etc. for it. The combination of the two equalities Th(BS) = T and Mod(T) = BS is
called a Galois correspondence (see, e.g., [Cohn 81]). It ensures the tightest possible fit
between a theory and a class of base systems for which it is designed.

Are there any known Galois correspondences about systems? The answer is yes. It
requires familiarity with a kind of NML called circumscription to appreciate its signif-
icance. However we can give a paraphrase. The result is about a class of systems that
have situations as described in section 4, and the kind of theory that is the tightest possi-
ble for them. This class has both the Markov and the inertial properties – two situations
that “look” the same with respect to the fluents that hold in them are indeed the same,
and no situation that does not have to make a transition to another (due to an action)
does so. It can be shown that the theory (and its logic) is one that uses the circumscrip-
tion NML in such a way as to enforce situation transitions that cause the least amount
of fluent change. A working paper that describes this result is [Foo, et.al. 01].

For posssibly non-inertial systems that need some frame axioms (so that even DEVS-
like specifications have to handle them in some procedural way), a natural question
that arises, even when there is a theory T that is related to the class BS via a Galois
correspondence, is how succinct this T can be? The intuitive idea is to associate with T
a logic or other calculus that is tailored specially for BS so that it avoids consultation
with large sets of frame axioms. Some progress has been made toward an answer in
[Peppas, et.al. 01].

7 Causality and Ramification

In this section we translate some AI logics of action terminology into familiar MaS
terminology or phrases to further close the gap between AI and MaS.

In AI there was a suspicion that whenever actions were under-specified in effects
there ought to be general principles on which states (or situations) should be preferred
to others. For instance the principle of inertia is a natural one – that if possible the sys-
tem should not change state at all. However if a change has to occur, one principle that

22 Norman Foo and Pavlos Peppas

stood out as highly intuitive is that the new state should differ minimally from the previ-
ous one. This measure of minimality was itself subject to a variety of interpretation, but
ultimately certain properties were agreed to be at least necessary and they were axioma-
tized as a preference ordering on possible next states (relative to the present one and the
action to be taken). As if to confuse matters, a rival approach was developed that used
causal rules to narrow next-state choices to the point of near-uniqueness. Here is what
a causal rule looks like: sw1 ∧ sw2 � light. As you can see, we have used the series
circuit as an example again but this time the fluents are propositions. The interpretation
of this rule is not logical implication but truth transmission – if the left hand side is true,
it forces the right hand side to be true. This is uni-directional and is not reversible by its
contrapositive (unlike material implication). Hence its flavor is not “pure” logic but pro-
cedural. The resolution of the comparative experessive power of these two approaches,
one using preferences and the other using causality, was achieved recently by Pagnucco
and Peppas [Pagnucco and Peppas 01]. The result was elegant. They showed that if the
information content conveyed by the chosen fluents was comparable (i.e., no “hidden”
fluents), then causal rules are essential in the sense that there are systems whose a priori
dynamics cannot be completely captured using preference orderings alone.

What does this say about the DEVS state transition mechanism? It is interesting
to note that causal rules are in fact built into DEVS. In fact in the co-ordinatized ver-
sion of its state representation the state transition functions are defined component by
component with explicit influencers and influencees as the fundamental causal graph
topologies capture which co-ordinates should feature as the antecedents and conse-
quents of each “mini” transition function. It is an interesting observation that the notion
of an influence relation was also (re-?) discovered in AI logics by a number of workers
including Thielscher [Thielscher 97].

Ramifications (see also Thielscher, op.cit.) in AI logics are analogous to internal
events in DEVS, but with possible chaining. Recall that such events are those that in-
evitably follow from some external event without further intervention. A prototypical
example is the event of opening a water tap that starts filling a cascade of basins in
an Italian style waterfall fountain. The ramifications are the overflow events for each
basin in the cascade. One AI logic that handles this with grace is the Event Calculus of
Kowalski and Sergot [Kowalski and Sergot] that has uncanny resemblance to DEVS but
with none of the latter’s highly practical features for interrupts, event aborts, etc. despite
much development beyond the pioneering paper cited. The “narrative” facility in some
current versions of the Event Calculus permits users to query states at the end of a se-
quence of events, both external and internal. This should be an easy exercise in DEVS.

8 Conclusion

We have surveyed commonalities between AI and MaS, and highlighted the cross-
borrowings that we believe will enrich both disciplines. In particular we suggested that
fully inertial systems in AI should just use DEVS instead of logic, and on the other hand
query answering and planning in DEVS should call upon localization techniques in AI
instead of repeated runs. With increased interaction between the two communities we
are hopeful that other cross-borrowings will be identified.

Systems Theory: Melding the AI and Simulation Perspectives 23

Acknowledgement

The work of the first author was performed in the National ICT Australia, which is
funded through the Australian Government’s Backing Australia’s Ability initiative, in
part through the Australian Research Council.

References

[Cohn 81] Cohn, P.M., Universal Algebra (Mathematics and Its Applications), Kluwer Aca-
demic Publishers, 1981.

[Fikes and Nilsson 71] Fikes, R. E. and Nilsson, N. J., “ STRIPS: A New Approach to the Ap-
plication of Theorem Proving to Problem Solving”, Artificial Intelligence, 2, 1971, 189-208.

[Foo 74] Foo, N., Homomorphic Simplification of Systems, Doctoral Dissertation, Computer and
Communication Sciences, University of Michigan, 1974.

[Foo, et.al. 01] Foo, N., Zhang, D., Vo, Q.B. and Peppas, P., “Circumscriptive Models and Au-
tomata”, working paper, downloadable from
http://www.cse.unsw.edu.au/ ksg/Pubs/ksgworking.html.

[Kowalski and Sergot] Kowalski, R.A. and M.J. Sergot. 1986. A Logic-Based Calculus of
Events. New Generation Computing 4: 67-95.

[Pagnucco and Peppas 01] Pagnucco, M. and Peppas, P., “Causality and Minimal Change De-
mystified”, Proceedings of the Seventeenth International Conference on Artificial Intelli-
gence (IJCAI’01) , pp 125-130, Seattle, August. Morgan Kaufmann, 2001; downloadable
from http://www.cse.unsw.edu.au/ ksg/Abstracts/Conf/ijcai01-DeMystify.html.

[Peppas 93] Peppas, P., Belief Change and Reasoning about Action – An Axiomatic Ap-
proach to Modelling Inert Dynamic Worlds and the Connection to the Logic of Theory
Change, Doctoral Thesis, Computer Science, University of Sydney, 1993; downloadable
from http://www.cse.unsw.edu.au/ ksg/Abstracts/Thesis/pavlos.PhD.html.

[Peppas, et.al. 01] Peppas, P., Koutras, C.D. and Williams, M-A., “Prolegomena to Concise The-
ories of Action”, Studia Logica, 67, No 3, April 2002, pp 403-418.

[Reiter 01] Reiter, R., Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems, MIT Press, Cambridge, MA., 2001.

[Sandewall 95] Sandewall, E., Features and Fluents – The Representation of Knowledge about
Dynamical Systems, Volume 1 Clarendon Press, Series: Oxford Logic Guides, Oxford 1995.

[Thielscher 97] Thielscher, M., “Ramification and Causality”, Artificial Intelligence Journal,
1997, 89, No 1-2, pp 317-364, 1997.

[Zeigler, et.al. 2000] B.P. Zeigler, H. Praehofer and T.G. Kim, Theory of Modeling and Simula-
tion :integrating discrete event and continuous complex dynamic systems, 2nd ed, Academic
Press, San Diego, 2000.

kntlee@sejong.ac.kr

kyuhshim@sejong.ac.kr

edwin.sawan@wichita.edu

δ

δ

ε

δ

δ

δ

δ

δ

δ

δ

δ

δ

+=

+=+ =
Δ= Δ −Δ= ττ

Δ
−=δ

+= =

τττδ δδ += δ=

δ

Δ
−

=δ Δ
=δ δ=

Ω=δ Ω=δ

⋅⋅⋅+++==

Δ Ω δ

δ

τττρ ρρ += ττ ρ=

====

δδ

ρ

δ

ρ

τ
τ

δ
ρ

ρρρ τ
Δ → 0

→δ →δ

δ

δ
γ

<γ <

<+Δ γγ Δ

τ
τ
τ

τερ
τρ

δ

δ

δδ

δδ +=

δ

δ

<⋅⋅⋅<<<⋅⋅⋅<<

<<=ε

τ
τ
τ

τρ
τρ

δ

δ

δ

δ +=

δδδδδδδ

δδδδδδ

+=−−=

+=−=

=−−+ δδδδ

=+−−− δδδδδ

δδδδδδ −=−=
−− == δδδδ

δδδδ −+= −
+

−
+ −−+= δδδδδ

ε ε

εε δδ +=+= −

δδ ==

δδδδδδδδ +++=+= −

δδ += δδδδδδδδ
−− ++=

−
δ δδ

δδ δ δ

⋅⋅⋅=ξ ⋅⋅⋅=ξ δδδ +

δδδ + >ε εε ∈

ξξξ ⋅⋅⋅

+++ ⋅⋅⋅ ξξξ
⋅⋅⋅=++= εξξ δδδ

⋅⋅⋅=+=++= εεξξ δδδ

ξ λ

Δ
−=

Δλ

ξ

=δ

δδ =

δδδδ ⋅⋅⋅=

ξγξγξγ −⋅⋅⋅−−=

δδδγ +−=

ξ δ

δ

ξξξξ δδδ ⋅⋅⋅=−=

+++ ⋅⋅⋅⋅⋅⋅= δδδδ

εξξ +=

=++=+

=++=+

>⋅⋅⋅>>>⋅⋅⋅>>>

<<=ε

+=
+
+

ε+=+=−= −

−−=+=
ε+=+−=++= −−−

−−=+=

−
+ −+=

+++= −
+

−− −=−−= −=

ε+= ε+=

+=+

++−+

−−−−=+
−

−−

+= −− −−−−=

=

= ⋅⋅⋅=

−⋅⋅⋅−−=

+−=

+++ ⋅⋅⋅⋅⋅⋅=

⋅⋅⋅=−=

ε+=

ε

±

Δ
Δ

Δ

±

λ ±
ε

ελλ +=

Δ

± ±

±
λ ±

ε ε+=

Δ

±
ξ ±

ξ ±

ε ελξ += −−

Δ

±
±

ξ ±
ε

εξξ += −−

=Δ −=ξ =Δ −=ξ =Δ
−=ξ =Δ −=ξ

δ

{ichikawa,koyama}@degulab.cs.dis.titech.ac.jp

htanuma@ims.u-tokyo.ac.jp

deguchi@dis.titech.ac.jp

ishiyama@degulab.cs.dis.titech.ac.jp
{koyama,deguchi}@dis.titech.ac.jp

s566jp@hotmail.com

htanuma@ims.u-tokyo.ac.jp

ρ

ρ

=

=

= ≥ =

=≥=

=−

=

ρ

ρ

× =

× + =

{bgerardo,jwlee,ihra}@kunsan.ac.kr

byunsy@cheju.ac.kr

=

+++=

=
=

++++=

=
=

{ }⊆∈=

⊆ ⊆

∪=

∪
=

∪
∪

≥

Reorder Decision System Based on the Concept
of the Order Risk Using Neural Networks

Sungwon Jung1, Yongwon Seo2, Chankwon Park3, and Jinwoo Park1

1 Department of Industrial Engineering, Seoul National University,
Seoul, 151-744, South Korea

jsw25@ultra.snu.ac.kr, autofact@snu.ac.kr
2 Department of Management, Dankook University,

Cheonan, 330-714, South Korea
seoyw@dankook.ac.kr

3 Department of e-business, Hanyang Cyber University,
Seoul, 133-791, South Korea

chankwon@hycu.ac.kr

Abstract. Due to the development of the modern information technol-
ogy, many companies share the real-time inventory information. Thus
the reorder decision using the shared information becomes a major is-
sue in the supply chain operation. However, traditional reorder decision
policies do not utilize the shared information effectively, resulting in the
poor performance in distribution supply chains. Moreover, typical as-
sumption in the traditional reorder decision systems that the demand
pattern follows a specific probabilistic distribution function limits prac-
tical application to real situations where such probabilistic distribution
function is not easily defined. Thus, we develop a reorder decision system
based on the concept of the order risk using neural networks. We train
the neural networks to learn the optimal reorder pattern that can be
found by analyzing the historical data based on the concept of the order
risk. Simulation results show that the proposed system gives superior
performance to the traditional reorder policies. Additionally, manage-
rial implication is provided regarding the environmental characteristics
where the performance of the proposed system is maximized.

1 Introduction

The improvement of modern information technologies allows many companies to
implement the information management system. The information management
system (e.g. POS) makes it possible for cooperating companies to track the
sales information and share inventory status information in real time. In this
environment, the use of a reorder policy based on the shared stock information
updated in real time becomes a major issue.

Traditional reorder policies can be classified into installation stock policies
and echelon stock policies. In echelon stock policies, the reorder time is deter-
mined based on the sum of the inventory at the subsystem consisting of the
considered facility itself as well as of all the downstream facilities whereas in

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 61–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

62 Sungwon Jung et al.

the installation stock policies, the reorder time is determined based on the in-
ventory at the considered facility only. In serial and assembly systems, echelon
stock policies show better performance than installation stock policies [4]. On
the other hand, in distribution systems, the echelon stock policies do not always
outperform installation stock policies [3], and both policies may be far from op-
timal [1]. Nevertheless, both policies have been commonly used for distribution
systems [2]. Furthermore, the echelon stock policies have often been used in the
situations where the shared stock information is available [5]. The reason eche-
lon stock policies tend to fail in certain situations is related to the way in which
they utilize centralized stock information. In one-warehouse multi-retailer sys-
tems, the echelon stock of the warehouse is defined as the sum of the stocks at
the warehouse and all the retailers. Thus the method of the evaluating the stock
cannot capture inventory unbalance among retailers, since the details of the re-
tailers’ stock information are lost when calculating the sum of the individual
stocks. To use the shared information more effectively, a new reorder decision
policy called as the ‘order risk policy’ was introduced [7]. The order risk repre-
sents the relative cost increase due to immediate orders, as compared to that
due to delayed orders. The order risk policy determines the reorder time based
on the value of the order risk. The detailed descriptions of the concept of the
order risk will be presented in section 2.2.

Although the order risk policy has proven itself to be as an effective inventory
control policy, there are some limits to its application in real practice. First, the
time required to compute the order risk increases exponentially with the size
of the problem. Since the problem size in real practice tends to be large, the
practicability of the order risk policy is limited. Second, the order risk policy re-
quires the assumption to be made that the demand follows a specific distribution
function. However, it is undesirable to apply this assumption to real situations,
because the demand information in the supply chain tends to be too distorted
for it to be matched to a specific distribution. To overcome this weakness, we
propose a reorder decision system based on the concept of the order risk using
neural network.

The rest of the paper is organized as follows; In Section 2,we describe the
backgrounds to explain the proposed system. Section 3 introduces the proposed
reorder decision system using neural networks. The experimental result is pre-
sented in Section 4, and in Section 5 are our conclusions and some directions for
future research.

2 Backgrounds

2.1 Two-Echelon Distribution System Model

In this study, we focus on the development of the reorder decision method
in the two-echelon distribution system. The general two-echelon distribution
system model consists of one warehouse and n retailers facing time variant
demand as shown in Figure 1. The retailers order in batches, and the lead
time(transportation times) is constant. Similarly, the warehouse replenishes its

Reorder Decision System Based on the Concept of the Order Risk 63

Fig. 1. Two-echelon distribution system model.

stock by ordering batches from an outside supplier with the constant lead time.
Unfilled demand at the retailers is backordered and a shortage cost is incurred
in proportion to the time remaining until delivery. Unfilled demand at the ware-
house is ultimately delivered to a retailer on a first come-first-serve basis and
a shortage cost is incurred in the same manner as for the retailers. There are
linear holding costs at all locations.

2.2 Optimal Reorder Decision Based on the Order Risk

In this section, we briefly explain the concept of the order risk. At each moment,
one should determine whether to order immediately or to delay ordering. In
order to make this decision, one needs to quantify the risk associated with an
immediate order. The order risk represents the relative cost increase due to an
immediate order, compared to that associated with a delayed order. If the value
of the order risk is positive, it is beneficial to delay ordering, whereas if the order
risk is negative, an order should be issued immediately.

The order risk is derived from marginal analysis. Since the cost increase due
to an immediate order is equivalent to the cost reduction obtained by delaying
the order, it is necessary to consider the marginal cost savings resulting from
delaying the order, denoted by Π(i0, Ω0), which is a function of the current
warehouse inventory level, i0, and the sum of the future orders from the retailers
within the warehouse lead time, denoted by Ω0. Let us assume that h0, p0 and
Q0 are the holding cost, penalty cost and ordering quantity at the warehouse
respectively. The marginal cost savings can be calculated using equation 1.

Π(i0, Ω0) =

⎧⎨⎩
h0Q0 if Ω0 < i0
h0(i0 + Q0 −Ω0) + p0(i0 −Ω0) if i0 ≤ Ω0 < i0 + Q0

−p0Q0 if Ω0 ≥ i0 + Q0

(1)

To explain the concept of the order risk policy, let us define the reorder
decision support function (RDSF) as the function whose value is the basis for
the reorder decision. Any continuous-review batch ordering policy can be said
to be one in which an order is issued when the value of the RDSF is below

64 Sungwon Jung et al.

Fig. 2. The reorder decision surface function of three policies.

a certain threshold value, i.e. the reorder point. Installation stock policies use
the installation stock level as their RDSF, while echelon stock policies use the
echelon stock level as the RDSF and the order risk policy use the value of order
risk as RDSF. In the case of a distribution system with one-warehouse and two
retailers in which the inventory levels of these three facilities are denoted as i0, i1
and i2, repectively, each RDSF of the three policies are shown in Figure 2

To apply the order risk policy to real practice, the estimation of the value
of Ω0 in equation 1 is required, since Ω0 is not known at the decision time.
Hence, then, the expected marginal savings E(Π(i0, Ω0)) is to be calculated,
based on the demand distribution assumption at each retailer. However, since
the computation time to calculate the exact value of the expected marginal
savings E(Π(i0, Ω0)) increases exponentially with the problem size, the real-
time calculation of the expected marginal savings is not practical for the large-
sized problems. On the other hand, the calculation of the value Π(i0, Ω0) for
the historical data can be easily calculated, since the sum of the orders from
retailers is already a known value. By analyzing the relationship between the
inventory status and the corresponding Π(i0, Ω0) values, we can find the pattern
of the marginal savings for a given inventory status without assuming a specific
probabilistic distribution for the customer demands occurring at retailers.

Based on this idea, we use a neural network in order to apply the concept
of the order risk to real practice. The proposed reorder decision method using
the neural network consists of three steps. First, we find the patterns of the
Π(i0, Ω0) values for a given inventory status by analyzing the historical data.
Second, we train the neural network to learn the patterns and finally we use the
trained neural network for the reorder decision in real time.

3 Reorder Decision System Using Neural Networks

A straightforward architecture for the reorder decision system using the neural
network can be one having the system inventory status as the inputs and the
corresponding marginal savings Π(i0, Ω0) as the output, as depicted in Figure 3.
However, through experiments with various numbers of the hidden layers and
neurons, we found that the learning speed is extremely slow, and furthermore,

Reorder Decision System Based on the Concept of the Order Risk 65

Fig. 3. Straightforward architecture for the reorder decision system.

the resulting performance of the system is very poor. This phenomenon can be
explained by the fact that the size of the training set should be large enough to
learn the patterns of the marginal savings for all the possible system inventory
status, especially when the system size is large. For example, if there is one
warehouse and 4 retailers whose batch ordering quantity is 50, then the resulting
number of the possible system inventory status to be learned will be 504η, where
η represents the possible inventory status of the warehouse. Thus, the number of
the system inventory status increases exponentially with the number of retailers
in the considering system. However, since the amount of the historical data set
is finite, it seems not possible to train the network to learn the patterns for all
the possible system status, especially when the system size is large.

Thus, we adopt the modular concept. By analyzing the calculation proce-
dure of the marginal savings, we can discover that the decision structure can
be divided into 2 parts. One is to estimate the sum of the retailer orders, i.e.
Ω0. The other is to estimate the marginal savings of the warehouse, Π(i0, Ω0).
Therefore, based on the decision structure, we can consider the modular neural
network architecture, as described in the following section.

3.1 System Architecture

Based on the rationale mentioned above, we propose the reorder decision system
architecture which is composed of two submodule groups, called as the ROE
(Retailer Order likeliness Estimator) module and the MSE (Marginal Savings
Estimator) module as shown in Figure 4.

ROE Module. The ROE module investigates the inventory status of the re-
tailer, and estimates the retailer’s order likeliness. Thus each retailer has its own
ROE module. The input node of the ROE module is the inventory status of the
retailer, and the output node is the retailer’s order likeliness. Through experi-
ments with various network configurations, we found that the configuration of
one hidden layer with three hidden neurons shows the best performance.

MSE Module. The role of the MSE module is to estimate the marginal savings
for a given system inventory status. Thus the input nodes of the MSE module
are the warehouse’s inventory status and the all the retailers’ order likeliness

66 Sungwon Jung et al.

Fig. 4. Modular architecture for the reorder decision system.

values transferred from the ROE modules, and the output node is the marginal
savings. The complexity of the neural network of the MSE module depends
on the number of the retailers in the system. Thus, in each case, the actual
configuration of the MSE module should be determined. To select the suitable
network configuration of the MSE module, the cross-validation technique is used.
We divide the data set into the training data set and the test data set, and then
a number of experiments with various network configurations are executed. In
each experiment, we train the neural network using training data and evaluate
it by test data. The network configuration which shows the best performance is
selected for the MSE module.

3.2 Training ROE and MSE Modules

ROE Module. To train the ROEk module whose role is to estimate the order
likeliness of the retailer k (ok), the training data is obtained in following ways.
Let ik,t and ik,t+l0 mean the inventory status of the retailer k at time t and at
time t + l0 respectively, in which l0 represents the lead time from the outside
supplier to the warehouse. The training data consists of one input value (ik) and
output value (zk) as expressed in equation 2 where Rk means the reorder point
at retailer k.

[XROEk
, YROEk

] = [(ik), (zk)]

where zk =
{

1 , if ik,t+1 < Rk

0 , otherwise

(2)

MSE Module. The input values are the inventory status at warehouse (i0)
and the retailers’ order likeliness values (o1, o2, .., on) transferred from the ROE
modules. The output value is the marginal savings (Π(i0, Ω0)) for the given
system inventory status. The testing data set can be expressed as in equation 3
where qk means the base order quantity of the retailer k

[XMSE , YMSE] = [(i0, o1, o2, ..., on), (Π(i0, Ω0))]

where Ω0 =
∑

qk × zk

(3)

Reorder Decision System Based on the Concept of the Order Risk 67

4 Computational Experiments

Our experimental model involves a two-level inventory system, in which a ware-
house supplies goods to three retailers. We assume the warehouse is a third-
party logistic company. The retailers and the warehouse participate in strategic
alliance that retailers provide the real-time inventory information and the ware-
house guarantees delivery within a fixed lead time. When an order (q0) is received
at the warehouse, a fixed ordering cost (s0) is incurred. The lead time from the
outside suppliers to the central warehouse (l0) is constant. Since the warehouse
guarantees delivery within a fixed lead time, the lead time from the warehouse
to retailer k (lk) is also constant. There is a linear holding cost at the warehouse
(h0) and at retailer k (hk). For experimental purpose, we generate the customer
demands based on a compound Poisson process, in which the number of the
customers of the retailer k per time unit follows poisson distribution with λk

and the order quantity from each customer follows normal distribution with av-
erage mk and standard deviation σk. Excessive customer demand at retailer k is
fully backordered and incurs a linear penalty cost (pk). Excessive retailer orders
at the central warehouse are satisfied by an emergency operation that incurs a
linear penalty cost (p0) at the warehouse, and the additional goods required are
assumed to be subtracted from the future replenishment to the warehouse. Re-
tailer k uses an ordinary (rk,qk) policy based on the local inventory position. The
base order quantity is calculated through the EOQ process shown in equation 4,
where d̃ means the average demand.

qk =
√

2d̃sk/hk (4)

In the experiment, we select the four experimental factors – 1) the lead
time (l0) at the warehouse, 2) the penalty cost (p0) at the warehouse, 3) the
customer demand variance (σk) at retailer k, and 4) the order quantity (qk))
at the retailer k. We choose three levels of each factor to configure the various
experimental environments. The detailed experimental settings are described in
Table 1.

The experimental model was developed using C++. We use Matlab neural
network tool box for the ROE and MSE module. In the simulation experiments,
each of the factor combinations are considered. At each case, the simulation is
run for 1000 time units. Following an initial warm-up period of 200 time units,
we calculate the average cost difference between the NN-based reorder system
and the systems based on the echelon stock policy and between the NN-based
order policy and based on the installation stock policy.

Table 1. Parameter setting for experiment.

h0 p0 l0 q0 hk pk lk qk mk σk

1 10 1 5qk 2 50 2 50 4 1
30 2 75 2
50 3 100 3

68 Sungwon Jung et al.

Fig. 5. Cost reduction with varying l0. Fig. 6. Cost reduction with varying p0.

The simulation result shows that the average cost reduction obtained by
adopting the proposed NN based reorder system rather than the system based
on the echelon stock policy and the installation stock policy is 12.89 and 29.87%,
respectively.

Figure 5 shows the variation in the cost reduction when the lead time from
the outside supplier to the warehouse changes. As can be seen in this figure,
the NN-based inventory reorder system is superior to the systems based on the
traditional policies in all cases. The cost reduction gap between the reorder
systems based on the installation stock and the echelon stock grows as the the
warehouse lead time increases, as indicated in [3]. The cost difference between the
NN-based reorder system and the echelon stock based reorder system decreases
as the warehouse lead time increases. This result is reasonable since a longer
warehouse lead time causes a higher variance in the sum of the retailer orders,Ω0,
during warehouse lead time and, consequently, the value of the shared stock
information decreases. Thus, the superiority of the NN-based reorder system is
more prominent for short warehouse lead times. Figure 6 shows the variation
in the cost reduction as a function of the penalty cost at the warehouse. It
shows that the cost difference between the NN-based reorder system and the
other systems grows as the penalty cost at warehouse increases. This result
is also reasonable, since the higher penalty cost at the warehouse reflects the
importance of the order decision at warehouse and the NN-based reorder system
uses the centralized information more effectively than the other systems. Thus,
the NN-based reorder system is better suited to the supply chain environment,
in which the penalty cost at the warehouse is high.

Figure 7 shows the variation in the cost reduction when the standard de-
viation of the customer demand changes. The echelon stock based system is
relatively superior to the installation stock based system regardless of the de-
mand rate. The cost difference between the NN-based reorder system and the
other systems decreases when the standard deviation of the customer demand
increases. Again, this result is intuitively reasonable, since higher variance of the
customer demand brings about a higher variance of the orders from the retailers
and, therefore, the value of the individual stock information decreases as the
demand rate increases. Thus, the superiority of the NN-based reorder system is

Reorder Decision System Based on the Concept of the Order Risk 69

Fig. 7. Cost reduction with varying σi. Fig. 8. Cost reduction with varying qi.

more prominent when the standard deviation of the customer demand at the
retailer is low. Figure 8 shows the variation in the cost reduction as a function
of the base order quantity of the retailer. This result shows that the cost dif-
ference between the NN-based reorder system and the other systems grows as
the base order quantity increases. It can be explained in the following ways. As
we mentioned above, the echelon stock based system does not use the shared
information effectively, because it cannot capture inventory unbalance among
retailers. When the base order quantity increases, the range of the inventory po-
sition at the retailers also broadens and the inventory unbalance becomes more
complex. Since our proposed NN-based reorder system is already trained to cap-
ture the inventory unbalance and make a decision based on this information, the
cost difference increases as the base order quantity increases.

5 Conclusion

In this study, we proposed the reorder decision system based on the concept of
the order risk using the neural network, which can be applied to real practice. We
developed the modular architecture for the reorder decision system, consisting
of the ROE module and the MSE module. The training procedure for each
module is provided. The experimental results show that the proposed reorder
decision system shows superior performance to the systems which make the
reorder decision based on the traditional policies such as the installation stock
policies or the echelon stock policies. Through sensitivity analysis, we found
that the benefits from adopting the proposed system can be maximized when
the warehouse lead time is long, the warehouse penalty cost is high, the variance
of the demand incurred at retailers is low, and the base order quantities of the
retailers are large. The reorder decision system using neural networks developed
in this research can be extended to the VMI environment that is recently one
of the popular strategic alliances in the supply chains. In this case, the system
architecture should be modified to enable the simultaneous reorder decision for
all of the retailers as well as the warehouse. Furthermore, it can be also extended
to more complex system models. For example, the extension to the systems
consisting of more than two-echelons or including the floor level scheduling is
worth to be studied.

70 Sungwon Jung et al.

References

1. Axäster S.: Comparison of echelon stock and installation stock policies for two-
level inventory systems. International Journal of Production Economics. 19 109-110
(1997)

2. Axäster S. and Zhang W.: A joint replenishment policy for multi-echelon inventory
control. International Journal of Production Economics. 59 243-250 (1999)

3. Axäster S. and Juntti L.: Comparison of echelon stock and installation stock policies
for two-level inventory systems. International Journal of Production Economics. 45
303-310 (1996)

4. Axäster, S. and Rosling L.: Installation vs. echelon stock policies for multi-level
inventory control. Management Science. 39 1274-1280 (1993)

5. Chen F, Zheng Y, S.: One-warehouse multiretailer systems with centralized stock
information. Operations Research. 45 275-287 (1997)

6. Haykin S.: Neural Networks (Maxwell Macmillan Publishing Company. 1998)
7. Seo Y., Jung S. and Hahm J.: Optimal reorder decision utilizing centralized stock

information in a two-echelon distribution system. Computers and Operations Re-
search. 29 171-193 (2002)

{yimira,taecho}@ece.skku.ac.kr

δ δ λ

δ
δ

δ
δ ×

λ λ

δ δ λ

×

δ × →
δ × →

∈
λ →

→

δ δ λ

× × × ×

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

hjkim@kisa.or.kr

∩ ≠ ∅

Ω Λ

Λ × Λ

Λ

δ

δ

δ

δ

δ

δ

δ δ

NS-2 Based IP Traceback Simulation
Against Reflector Based DDoS Attack

Hyung-Woo Lee1, Taekyoung Kwon2, and Hyung-Jong Kim3

1 Dept. of Software, Hanshin University, Osan, Gyunggi, 447-791, Korea
hwlee@hs.ac.kr

2 School of Computer Engineering, Sejong University, Seoul, 143-747, Korea
tkwon@sejong.ac.kr

3 Korea Information and Security Agency, Garak, Songpa, Seoul, 138-803, Korea
hjkim@kisa.or.kr

Abstract. Reflector attack belongs to one of the most serious types
of Distributed Denial-of-Service (DDoS) attacks, which can hardly be
traced by traceback techniques, since the marked information written by
any routers between the attacker and the reflectors will be lost in the
replied packets from the reflectors. In response to such attacks, advanced
IP traceback technology must be suggested. This study proposed a NS-2
based traceback system for simulating iTrace technique that identifies
DDoS traffics with multi-hop iTrace mechanism based on TTL informa-
tion at reflector for malicious reflector source trace. According to the
result of simulation, the proposed technique reduced network load and
improved filter/traceback performance on distributed reflector attacks1.

Keywords: NS-2, Reflector Attack, DDoS, IP Traceback, Simulation.

1 Introduction

In a distributed denial-of-service (DDOS) attack, the attacker compromises a
number of slaves and installs flooding servers on them, later contacting the set
of servers to combine their transmission power in an orchestrated flooding attack
[1,2]. The dilution of locality in the flooding stream makes it more difficult for the
victim to isolate the attack traffic in order to block it, and also undermines the
potential effectiveness of common traceback techniques for locating the source of
streams of packets with spoofed source addresses [3,4].

In reflector attack, one host (master) sends control messages to the previously
compromised slaves, instructing them to target a given victim. The slaves then
generate high volume streams of traffic toward the victim, but with fake or
randomized source addresses, so that the victim cannot locate the slaves [5,6].
The problem of tracing back such streams of spoofed packets has recently received
considerable attention.

With considerably higher probability the router marks the packets with
highly compressed information that the victim can decode in order to detect
1 This work is supported by University IT Research Center (ITRC) Project from

Korea.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 90–99, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

NS-2 Based IP Traceback Simulation Against Reflector Based DDoS Attack 91

the edges (pairs of packet-marking routers) traversed by the packets, again en-
abling recovery of the path back to the slave. This scheme can trace back po-
tentially lower-volume flows than required for traceback using iTrace (ICMP
Traceback) [7].

The use of hundreds or thousands of slaves can both greatly complicate
traceback (due to the difficulty of disentangling partial traceback information
relating to different sources, and/or having to contact thousands of routers)
and greatly hinder taking action once traceback succeeds (because it requires
installing hundreds of filters and/or contacting hundreds of administrators) [4].

Attackers can do considerably better still by structuring their attack traffic to
use reflectors. A reflector is any IP host that will return a packet if sent a packet.
So, for example, all Web servers, DNS servers, and routers are reflectors, since
they will return SYN ACKs or RSTs in response to SYN or other TCP packets.
Thus currently available technologies do not provide active functions to cope
with reflector attack such as tracing and confirming the source of DoS hacking
attacks. Thus it is necessary to develop a technology to cope actively with such
DDoS reflector attacks. Even if the trace-route technique is applied to identify
the source address, the technique cannot identify and trace the actual address
because the address included in reflector based DDoS (Distributed Denial of
Service) is spoofed [5].

When a DDoS attack has happened, methods like ingress filtering filter and
drop malicious packets at routers on the network, so they are passive to DDoS
attacks. In traceback methods such as [9,10], routers generate information on
the traceback path while transmitting packets are sent by reflector attack on
slaves, and insert traceback information into the packets or deliver it to the IP
address of the target of the packets.

On existing Reverse iTrace [8], common routers send ICMP messages to the
source of the just-processed packet rather than its destination (unlike iTrace).
Routers on the path between slave and the reflector will send ICMP messages
to Victim to enable trace back to the slaves. But, in this study we propose
a new reflector traceback scheme which combine Pushback module on reflector
traceback. This study proposes a technique to simulate traceback the source IP of
spoofed DDoS packets using NS-2 [11] by combining the existing method, which
provide a control function against DDoS reflector attacks [12], with a traceback
function. Therefore, a router performs the functions of identifying/controlling
traffic, and when a DDoS attack happens it sends packet to its previous hop
router by marking router’s information on the header with advanced ICMP
traceback mechanism.

2 NS-2 for DDoS Simulation

2.1 Introduction to Network Simulation: NS-2

The NS-2 simulator [11] is a discrete event simulator widely used in the net-
working research community. It was developed at the University of California at

92 Hyung-Woo Lee, Taekyoung Kwon, and Hyung-Jong Kim

Berkeley and extended at Carnegie Mellon University to simulate wireless net-
works. These extensions provide a detailed model of the physical and link layer
behavior of a wire/wireless network and allow arbitrary movement of nodes
within the network. NS-2 Simulator is usually a software package that simulates
a real system scenario. Through the simulation we can test how a device or a
system will perform in terms of timing and result. In addition to that it can be
used to explore new policies, operating procedure without interrupting the sys-
tem in real time. Network simulation allows us to check the system compressing
the time, or expanding it.

Network simulation is very important because the network designer can test
a complex network and make the right decisions about the designing in order
the network will not face any problems in the future. New network devices can
be added and testing without disturbing the existing network. Also during the
simulation the designer can test how he can improve the network bandwidth
or the current data speed. Finally network simulation can be used for tutorial
so a network engineer can solve problems with real devices. NS-2 has high per-
formance and it is very easy to use because of the combination of the above
languages. NS architecture follows the OSI model.

Node in a network is a point that connects other points, either a distribution
point or an end point for data transmissions. A node can sent or receive data. All
kind of nodes in ns-2 are separated in two types of nodes. A unicast node that
sends packets to only one node and a multicast node that sends packets to more
than one node. Attack traffic source node is a node that sends malicious data
(spoofed data) to other nodes. Traffic agents such as TCP or UDP are assigned
on those nodes.

The receiving node is called sink node. A sink node can be an end node of
the network. It can receive from different type of traffic source node. In case of
a sink receives data form a TCP traffic node is defined as Agent/TCP Sink and
as Agent/Null if it is received from a UDP traffic node. Two types of agent can
be assigned on the same node.

2.2 DDoS Simulation Modeling Architecture with NS-2

We motivate our discussion with an example of a DDoS network illustrated. The
main goal of our work is to recreate such network in a simulation environment
where the behavior of the network can be analyzed. In our simulation environ-
ment, a typical network scenario will consist of three types of nodes as Fig. 1.:
1) traceback nodes that monitor their immediate environment, 2) target nodes
that generate the various traceback stimuli that are received by multiple nodes
over different channels. 3) user nodes that represent clients and administrators
of the network.

Shown in Fig. 1, three type of node models make up the key building blocks
of our simulation environment. The traceback nodes are the key active elements,
and form our focus in this section. In our model, each traceback node is equipped
with one network protocol stack and one or more traceback stacks. The role of
the traceback protocol stacks is to detect and process traceback stimuli on the

NS-2 Based IP Traceback Simulation Against Reflector Based DDoS Attack 93

Fig. 1. Simulation Architecture on NS-2.

network channel and forward them to the application layer which will process
them and eventually transmit them to a user node in the form of DDoS reports.
In addition to the protocol and traceback stacks that constitute the algorithmic
components, each node is also equipped with a ICMP information corresponding
to the packet transmission path components.

We used gTraceBack module for simulate DDoS packet in NS-2. DDoS can
be implemented with an UDP flow through bottle-neck traffic. The default is
to use an UDP connecton woth a CBR traffic. By default the functions uses an
UDP Agent with a CBR traffic.

We use a class named offender which give some base for people who want to
develop their own offender classes. We derivate this class first in a class named
offender proto which contain the protocol used by the offender (DDoS attacker).
And then an offender app class which derivated from the offender proto. It con-
tains the application source and destination of the offender.

There is one function remaining to create attackers against victims. We can
use one or more targer (victim) and one more attackers. The default is to use
an UDP connection with a CBR Traffic. In this case we have made a special
function to set the rate of the offender with some arguments.

$ns multi-create-agent-offender. targets < nodes − 1 >< pktClass 0 ><
array srcsrc >< array dstdst >: This function return an offender app list
with all the needed parameters to work.

– targets: is a list of target. A target is a node that we must created before
(a simple node is sufficient with the command set n(0) [ns node] for example).

– node: if we give a lost of (or one) node, they will be used to attach the
attackers on it/them. If we give as nodes as targets then this will make a one

94 Hyung-Woo Lee, Taekyoung Kwon, and Hyung-Jong Kim

against one topology. If we don’t give any nodes, then they are created for
convenience. But be careful, in this case we must link them with its topology.

– pktClass: if we give a list (or one value), then the flow ID will be what we
give.

– array src and array dst: these are the name of an array which contains a list
of argument as follow.
• name of the protocol (UDP – default for the sender), Null (default for

the receiver), TCP/Sack1, TCPSink/Sack1,...).
• name of the application (under the app hierarchy) (Traffic/CBR – default

for the sender), FTP,...).
• a list of arguments to pass to the application constructor.
• the name of an already initialized procedure to pass to the agent (Fig. 2).
• a list with the arguments to pass when the function calls the initizlized

procedure.

Fig. 2. Traceback Agent with TCP Connections.

Based on these simulation architecture, we can generate DDoS simulation net-
work and evaluate the overall traffics by randomly selected network node as
Fig. 1. This architecture can also be applied into reflector based DDoS attack
model for simulating proposed mechanism as Fig. 3.

Fig. 3. DDoS Attack Simulation on NS-2.

NS-2 Based IP Traceback Simulation Against Reflector Based DDoS Attack 95

3 Reflector Based DDoS Attacks

3.1 Reflector Attack Mechanism

Using these library in NS-2 simulator, we can construct a simulated reflector
based DDoS attack system. At first, we consider reflector based attack mecha-
nism.

Reflector Attack: The attacker first locates a very large number of reflectors.
They then orchestrate their slaves to send to the reflectors spoofed traffic
purportedly coming from the victim, V . The reflectors will in turn generate
traffic from themselves to V . The net result is that the flood at V arrives
not from a few hundred or thousand sources, but from a million sources, an
exceedingly diffuse flood likely clogging every single path to V from the rest
of the Internet.

The operator of a reflector cannot easily locate the slave that is pumping the
reflector, because the traffic sent to the reflector does not have the slave’s source
address, but rather the source address of the victim.

In principle the we can use traceback techniques such as those discussed
above in order to locate the slaves. However, note that the individual reflectors
send at a much lower rate than the slaves would if they were flooding V directly.
Each slave can scatter its reflector triggers across all or a large subset of the
reflectors, with the result being that if there are Nr reflectors, Ns slaves, and a
flooding rate F coming out of each slave, then each reflector generates a flooding
rate as follows.

F ′ =
Ns

Nr
F (1)

So a local mechanism that attempts to automatically detect that a site has a
flooding source within it could fail if the mechanism is based on traffic volume.

In addition, common traceback techniques such as iTrace [7] and PPM (prob-
abilistic packet marking) [9] will fail to locate any particular slave sending to a
given reflector. If there are Nr reflectors, then it will take Nr times longer to
observe the same amount of traffic at the reflector from a particular slave as it
would if the slave sent to the victim directly. Against a low-volume traceback
mechanism like SPIE, the attacker should instead confine each slave to a small
set of reflectors, so that the use of traceback by the operator of a single reflector
does not reveal the location of multiple slaves.

3.2 Reflector Defense Methods

There are a number of possible defenses against reflector attacks. But, in prin-
ciple DDoS prevention could be possible to deploy traceback mechanisms that
incorporate the reflector end-host software itself in the traceback scheme, allow-
ing traceback through the reflector back to the slave.

Packet classification mechanism requires widespread deployment of filtering,
on a scale nearly comparable with that required for widespread deployment

96 Hyung-Woo Lee, Taekyoung Kwon, and Hyung-Jong Kim

of anti-spoof filtering, and of a more complicated nature. Common traceback
mechanism has enormous deployment difficulties, requiring incorporation into
a large number of different applications developed and maintained by a large
number of different software vendors, and requiring upgrading of a very large
number of end systems, many of which lack any direct incentive to do so.

In addition, traceback may not help with traceback in practice if the trace-
back scheme cannot cope with a million separate Internet paths to trace back
to a smaller number of sources. So we need an advanced new mechanism against
reflector-based DDoS attack by using combined technique both packet classifica-
tion and advanced traceback mechanism.

4 Advanced Traceback Against Reflector Attacks

4.1 IP Traceback Against Reflector Attack

In this study, we propose a new iTrace mechanism against reflector attacks by
using modified pushback [13] module as follow Fig. 4, which shows overall struc-
ture of proposed scheme.

Let’s say Ax is the IP address of Rx, Px is IP packet arrived at Rx, and
Mx is 24 bits on the header of Px in which marking information can be stored.
In packet Px, Mx is composed of 8-bit TOS (type of service) field, and 16-bit
ID field. The use of TOS field does not affect the entire network. This study
defines the unused 2 bits out of TOS field as TM (traceback marking flag) and
CF (congestion flag). In TOS field, the first 3 bits are priority bits, and next
three bits are minimum delay, maximum performance and reliability fields but
not used currently.

TTL (time to live) in all packets is an 8-bit field, which is set at 255 in
ordinary packets. The value of TTL field is decreased by 1 at each router until
the packet reaches the target. Specifically because the maximum network hop

Fig. 4. Pushback based iTraceback Against Reflector Attack.

NS-2 Based IP Traceback Simulation Against Reflector Based DDoS Attack 97

count is 32 in general, the distance of packet transmission can be calculated
only with the lower 6 bits out of the 8 bits of TTL field in packet Px arrived at
router Rx.

Step 1: The router extracts information of the lower 6 bits from the TTL field
of packet Px, names it Tx = TTLofPx∧00111111 and stores it in TOS 6-bit
field PTF

x of the packet.

Tx value indicates the distance of the packet from the attack system. When
informed of the occurrence of abnormal traffic, router Rx performs marking for
packet Px corresponding to congestion signature classified by decision module.

Step 2: After the router received a packet, it resets TM field in TOS field as
1. Then it calculates Tx for 8-bit TTL field of packet Px and stores it in the
6 bits of TOS field. Then the router calculates 8-bit hash value for Ax the
address of router Rx and Tx calculated earlier using hash function H(·), and
marks the value on PMF1

x , the first 8 bits of ID field. The marked packet is
delivered to Ry, the next router on the routing path to the target address.

Step 3: Now when router Ry checks PTM
x the value of TM field in the packet

and finds it is 1, the router applies the hash function to the value obtained
by subtracting 1 from PTM

x , which is corresponding to the 6 bits of TOS
field in the packet, and router IP address Ax and marks the resulting value
on PMF1

x = H(Tx|Ax), PMF2
x = H(PTF

x − 1|Ay).

After marking, the router set CF at 1 and sends the packet to the next router.
The next router, finding TM and CF are set at 1, does not perform marking
because the packet has been marked by the previous router.

4.2 Generate ICMP Traceback Message Against Reflector Attack

We generate the suspicious packet into ICMP packet and send it by iTrace
module to the victim host. In an IP header excluding the option and the padding,
the length of the unchanging part to the bit just prior to the option is 128 bits
excluding HLEN, TTL and checksum. The 128 bits in a packet can be used to
represent unique characteristics, so a router can use them in generating a ICMP
traceback message for the packet.

Step 4: The 128 bit Mx information can be divided into four 32-bit blocks as
follows. Mx = Hx1|Hx2|Hx3|Hx4. 32-bit Hx can be obtained from the four
32-bit sub-blocks. Hx = Hx1 ⊕Hx2 ⊕Hx3 ⊕Hx4

Now the router is aware of Ay IP address of its forward router Ry and Ax

the IP address of its backward router Rx in relation to its own address Ax

on the path through which a packet is transmitted. Then the router calculates
Ax

′ = Ax ⊕ Ay ⊕ Az ⊕ Nx by generating 32-bit information of an arbitrary
random number Nx.

Step 5: The the router generates Hx
′ through the following process using Ax

′,
which is calculated for the IP addresses of the router, of the upper router to
which the packet has been sent, and of the next router to which the packet
is to be sent. Hx

′ = Hx ⊕Ax
′

98 Hyung-Woo Lee, Taekyoung Kwon, and Hyung-Jong Kim

Hx
′ is generated by XOR operation on information unique to the IP packet in ad-

dition to the 32-bit IP address of the router and information related to the path.
Specifically, Hx

′ is bit-interleaved with Nx and produces 64-bit information. It
is included in 64-bit information in an ICMP traceback packet and sent to the
target IP address. Of course, transmitted ICMP message Ix is not delivered to
the source IP address but to the target IP address.

Step 6: From ICMP message Ix and packet Px arrived at the target IP address,
the victim system identifies path information. First it obtains Hx

′ and Nx

for 64-bit information included in the ICMP message.

Here, we can calculate Hx
′ is Hx ⊕ Ax ⊕ Ay ⊕ Az ⊕ Nx, Hx

′ ⊕ Nx, therefore,
we can get Hx ⊕ Ax ⊕ Ay ⊕ Az . Now it is possible to obtain Hx by generating
Mx

′, which is information corresponding to 128 bits in packet Px. Finally the
victim system can obtain Ax the 32-bit IP address of the router as well as the
addresses of the routers before and after that through Hx

′⊕Nx⊕Mx
′ operation.

Ax ⊕Ay ⊕Az = Hx
′ ⊕Nx ⊕Mx

′.

4.3 Reflector DDoS Traceback Simulation on NS-2

In order to evaluate the functionality of the proposed method, we simulated
its traceback procedure using NS-2 in Linux as shown Fig. 5. In the method
proposed, a classification technique is adopted in classifying and control DDoS
traffic and as a result the number of marked packets has decreased. We can con-
trol the DDoS traffic by issuing traceback message to upper router and marking
router’s own address in IP packet. The method proposed in this study runs in
a way similar to existing iTrace/PPM mechanism, so its management load is
low. Furthermore, because it applies identification/control functions to packets
at routers it reduces load on the entire network when hacking such as DDoS
attacks occurs. The method proposed in this study uses an packet marking with
iTrace for providing reflector traceback and control/filter function and marks
path information using the value of TTL field, which reduces the number of
packets necessary for restructuring a traceback path to the victim system.

Fig. 5. Reflector based DDoS Traceback Simulation on NS-2.

NS-2 Based IP Traceback Simulation Against Reflector Based DDoS Attack 99

5 Conclusions

The dilution of locality in the DDoS flooding reflector stream makes it more
difficult for the victim to isolate the attack traffic in order to block it. When a
DDoS attack has happened, methods like ingress filtering filter and drop mali-
cious packets at routers on the network, so they are passive to DDoS attacks.
In traceback methods, routers generate information on the traceback path while
transmitting packets are sent by reflector attack on slaves, and insert traceback
information into the packets or deliver it to the IP address of the target of
the packets. Thus this study proposes a technique to trace back the source IP
of spoofed DDoS packets by combining the existing both pushback and iTrace
method, which provide a control function against DDoS reflector attacks, with
a traceback function.

References

1. John Elliott, “Distributed Denial of Service Attack and the Zombie and Effect”,
IP professional, March/April 2000.

2. L.Garber, “Denial-of-Service attacks trip the Internet”, Computer, pages 12, Apr.
2000.

3. Andrey Belenky, Nirwan Ansari, “On IP Traceback”, IEEE Communication Mag-
azine, pp.142-153, July, 2003.

4. Tatsuya Baba, Shigeyuki Matsuda, “Tracing Network Attacks to Their Sources”,
IEEE Internet Computing, pp. 20-26, March, 2002.

5. Vern Paxson, “An Analysis of Using Reflectors for Distributed Denial-of-Service
Attacks”, ACM Comp. Commun. Rev., vol.31, no.3, July 2001, pp. 3-14.

6. Chang, R.K.C., “Defending against flooding-based distributed denial-of-service at-
tacks: a tutorial”, IEEE Communications Magazine, Volume: 40 Issue: 10 , Oct
2002, pp. 42 -51.

7. Steve Bellovin, Tom Taylor, “ICMP Traceback Messages”, RFC 2026, Internet
Engineering Task Force, February 2003.

8. C. Barros, “[LONG] A Proposal for ICMP Traceback Messages,”
http://www.research.att.com/lists/ietf-itrace/2000/09/msg00044.html, Sept. 18,
2000.

9. K. Park and H. Lee, “On the effectiveness of probabilistic packet marking for IP
traceback under denial of service attack”, In Proc. IEEE INFOCOM ’01, pages
338-347, 2001.

10. D. X. Song, A. Perrig, “Advanced and Authenticated Marking Scheme for IP Trace-
back”, Proc, Infocom, vol. 2, pp. 878-886, 2001.

11. K. Fall, “ns notes and documentation”, The VINT Project, 2000.
12. Vern Paxson, “An Analysis of Using Reflectors for Distributed Denial-of-Service

Attacks”, ACM SIGCOMM, Computer Communication Review, pp.38-47, 2001.
13. S. Floyd, S. Bellovin, J. Ioannidis, K. Kompella, R. Mahajan, V. Paxson, “Push-

back Message for Controlling Aggregates in the Network”, Internet Draft, 2001.
14. Alefiya Hussain, John Heidemann, Christos Papadopoulos, “A Framework for Clas-

sifying Denial of Service Attacks”, SIGCOMM’03, August 25-29, pp.99-110, 2003.
15. Cheng Jin, Haining Wang, Kang G. Shin, “Hop-Counter Filtering: An Effective

Defense Against Spoofed DDoS Traffic”, CCS’03, October 27-31, pp.30-41, 2003.

Recognition of Human Action for Game System

Hye Sun Park1, Eun Yi Kim2, Sang Su Jang1, and Hang Joon Kim1

1 Department of Computer Engineering, Kyungpook National Univ., Korea
{hspark,ssjang,hjkim}@ailab.knu.ac.kr

2 Department of Internet and Multimedia Engineering, Konkuk Univ., Korea
eykim@konkuk.ac.kr

Abstract. Using human action, playing a computer game can be more
intuitive and interesting. In this paper, we present a game system that
can be operated using a human action. For recognizing the human ac-
tions, the proposed system uses a Hidden Markov Model (HMM). To
assess the validity of the proposed system we applied to a real game,
Quake II. The experimental results verify the feasibility and validity of
this game system.This system is currently capable of recognizing 13 ges-
tures, corresponding to 20 keyboard and mouse commands for Quake II
game.

Keywords: Gesture Recognition, Game System, HMM (hidden Markov
model).

1 Introduction

Human actions can express emotion or information, either instead of speaking
or while human is speaking. The use of human actions for computer-human
interaction can help people to communicate with computer in more intuitive way.
Recently, almost of a popular computer game involves the human player directly
controlling a character. If the game players operate game through human actions,
they should be more intuitive and interesting during playing such computer
game [1–3].

This paper presents a new game system using human actions. Human actions
have many variations, such variations occur even if the same person performs the
same gesture twice. Thus we use a hidden Markov model (HMM) for recognizing
user gestures. A HMM has a rich mathematical structure and serves as the
theoretical basis for a wide range of applications. HMM based recognizer has
been proposed by many researchers and become quite common for game systems
(e.g. [4–6]).

The rest of the paper is organized as follows. We explain a proposed game
system in Section 2 and describe an each module of the system more detail in
subsection of Section 2: a feature extraction, a pose classification and recogni-
tion of human action. The experimental results and performance evaluation are
presented in Section 3. Finally, Section 4 summarizes the paper.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 100–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Recognition of Human Action for Game System 101

2 The Proposed Game System Using Human Actions

The proposed game system is Quake II game controlled by human actions.
Quake II game is one of action game, which involve the human player controlling
a character in a virtual environment.

Our game system can be controlled Quake II game with 13 human actions.
The 13 actions are frequently used command in Quake II : walk forward, back
pedal, attack, turn left, turn right, look up, look down, step left, step right, center
view, up/jump, down/crouch and run. So we represent those commands using
gestures, which are described in Fig. 1.

Walk Forward (WF)

Shake a right hand in

a forward direction.

Back Pedal (BP)

Shake a left hand

in a backward

direction

Attack (A)

Stretch out

a right hand

in front.

Turn Left (TL)

Stretch out

a left hand
to the left.

Turn Right (TR)

Stretch out

a right hand
to the right.

Look Up (LU)

Move a head

to the left.

Step Left (SL)
Move a right

hand down and a
left hand to the left.

Step Right (SR)
Move a left hand

down and a right
hand to the right

 Look Down (LD)
Move a head

to the right.

Center View (CV)

Stretch out both hands
horizontally, then return

to the same position.

Up/Jump (U/J)

Move both hands down
and tilt head back.

Down/Crouch (D/C)

Lift both hands
simultaneously.

Run (R)

Swing arms
alternately.

Quake Command Gesture Quake Command Gesture Quake Command Gesture

Fig. 1. Thirteen types of gestures used in Quake II.

The proposed system consists of an input device, a processing unit, and an
output device, and the overall configuration is shown in Fig. 2. A video camera,
which is located above the user at an angle of sixty-two degrees, captures gestures
of a user in real-time. The input image sequences are sent to a processing unit
that is core of the proposed game system. The processing unit recognizes human
actions from the sequences. This processing unit is performed by four steps: a
feature extractor, a pose classifier, a gesture recognizer, and a game controller.
Firstly, a feature extractor extracts a feature that is represented by positions of
user head and hands. Subsequently, a pose classifier classifies a pose using symbol
table and a gesture recognizer recognizes human actions from the classified pose
symbol sequence. Finally, a game controller translates that sequence into the
game commands. The result of experiments shows that the proposed system is
suitable for application of real game. The game situations that are operated by
user gestures are appeared in a big screen again through a projector.

102 Hye Sun Park et al.

Fig. 2. Computer game setup using the gesture recognition method.

2.1 Feature Extraction

To extract the positions of head and hands as features from image sequence,
feature extraction in the proposed method is performed by three steps: skin color
detection, noise filtering, and position detection. Skin color detection identifies
body parts using skin color model, where the color distribution of human skin
is clustered within a small area of chromatic color space and then it can be
approximated using a 2D-Gaussian distribution [7]. Therefore, the skin color
model can be approximated by a 2D-Gaussian model, N(m,

∑2), where the
mean and variance are as follows:

m = (r, g), where r =
1
N

N∑
i=1

ri and g =
1
N

N∑
i=1

gi, (1)

∑
=

[
σrr

σgr

σrg

σgg

]
. (2)

Then, noise filtering eliminates noise and fills out any holes in the image.
Finally, position detection identifies the position of the head and hands by la-
beling a region, making a box based on the labeled region, and discriminating
body parts using heuristic rules. Fig. 3. shows an example of feature extraction.

Recognition of Human Action for Game System 103

Fig. 3. Results of feature extraction step: (a) Original image. (b) Extracted head and
hands regions. (c) Result image of noise filtering and position detection.

2.2 Pose Classification

In this stage, a pose is classified the extracted body parts into a symbol in a
symbol table according to pose classification. Here, we assumed that each gesture
consists of start pose, intermediate poses between a start pose and a distinctive
pose, a distinctive pose and end pose.

Fig. 4 shows the symbol table used in our system that includes 23 poses
such as a start (end pose), distinctive poses, and intermediate poses. A symbol
is approximated for an input feature using the predefined symbols in the symbol
table. An input feature is classified to a symbol that has a smallest norm between
input feature and the predefined symbol table.

Fig. 5 shows an example of pose classification.

2.3 Gesture Recognition

Since gestures are presented in 3D spatio-temporal space in the real world, many
variations occur although the same person performs the same gesture twice.
Thus, the recognition model needs to be robust to such variations in time and
shape [8]. An HMM has a rich mathematical structure and serves as the the-
oretical basis for a wide range of applications. It can model spatio-temporal
information in a natural way, and includes elegant and efficient algorithms for
learning and recognition, such as the Baum-Welch algorithm and Viterbi search
algorithm [9].

Therefore, we use a HMM for recognize gestures. Every time a symbol is
given, a gesture recognizer determines whether the user is performing one of the

104 Hye Sun Park et al.

Symbol 0 Symbol 1 Symbol 2 Symbol 3 Symbol 4 Symbol 5

Symbol 6 Symbol 7 Symbol 8 Symbol 9 Symbol 10 Symbol 11

Symbol 12 Symbol 13 Symbol 14 Symbol 15 Symbol 16 Symbol 17

Symbol 18 Symbol 19 Symbol 20 Symbol 21 Symbol 22

Fig. 4. A symbol table: it includes 23 poses such as a start (end pose), distinctive and
intermediate poses.

Fig. 5. Results of pose classification step: (a) Original image. (b) Result of Feature
Extraction. (c) An approximated Symbol.

thirteen gestures predefined above, or not. If he or she is, the gesture recognizer
returns the gesture that the user is performing.

For many applications, especially in speech recognition, left-right model has
been widely used. So we create a discrete HMM for each gesture. Fig. 6 shows
an example of the structure used for the HMMs. For each of the 13 gestures, a
5-state HMM was trained separately using the Baum-Welch algorithm.

To determine the probability of an observed sequence given an HMM when
the parameters (A, B, π) are known, a forward algorithm is used to calculate the
probability of a T long observation sequence,

Y (K) = {YK1 , · · · , YKr} , (3)

where each belongs to the observable set. Intermediate probabilities (α′) are
calculated recursively by initial α. Then the initial α for each state is calculated
using the following equation.

α1 (j) = π (j) · bjk, (4)

Recognition of Human Action for Game System 105

Fig. 6. An HMM model: (a) the gesture for the command ATTACK, (b) a left-right
HMM.

Then, for each time step (t = 2, 3, · · · , T), the partial probability α is calcu-
lated as follows:

αt+1 (j) =
n∑

t=1

αt (i)aij · bjk, (5)

That is, the partial probability is obtained as the product of the appropri-
ate observation probability and the sum of all possible routes to that state, by
exploiting recursion based on knowledge of these values for the previous time
step.

Finally, the sum of all partial probabilities gives the probability of the obser-
vation, given the HMM, λ.

Pr (Y)(K) =
n∑

j=1

αT (j) . (6)

Eventually the model with the highest probability is selected as the objec-
tive one.

3 Experimental Results

To show the impressive effect of our gesture based game system using HMM in
game entertainment, we combine it with an interactive game, Quake II. This
game system is developed in PC platform, the operating system is Windows XP,
CPU is Pentium IV-2.0GHz, and memory size is 512M. The gesture based game
system is demonstrated Fig. 7.

106 Hye Sun Park et al.

Fig. 7. Environment of the proposed game system.

Table 1 shows the mean and covariance matrix of the skin color model ob-
tained from 200 sample images. Since the model only has six parameters, it is
easy to estimate and adapt to different people and lighting conditions.

Table 2 shows the performance of the proposed HMM in recognizing 13 com-
mands. The result shows recognition rate of about 90.87% for the thirteen ges-
tures.

Table 1. Actual 2D-Gaussian parameters.

Parameters Values Parameters Values

μr 117.588 ρx,yσgσr -10.085

μg 79.064 ρx,yσrσg -10.085

σ2
r 24.132 σ2

g 8.748

Table 2. A gesture recognition results.

Gesture Types Recognition Rates

Attack (A) 94.25%

Walk Forward (WF) 88.75%

Back Pedal (BP) 90.00%

Turn Left (TL) 91.85%

Turn Right (TR) 91.88%

Run (R) 80.62%

Step Left (SL) 96.12%

Step Right (SR) 96.25%

Look Up (LU) 86.75%

Look Down (LD) 76.25%

Center View (CV) 96.25%

Up·Jump (UJ) 96.15%

Down·Crounch (DC) 96.25%

Recognition of Human Action for Game System 107

HMM model included Parameters for thirteen Gestures

ATTACK 1

0.86

0.14

Symbol 0
0.903

2

0.48

0.52

Symbol 1

0.865

3

0.85

0.15

Symbol 1
0.903

4

0.24

0.76

Symbol 0
0.722

5

1

Symbol 0

0.904

Walk
Forward

1

0.89

0.11

Symbol 0

0.683

2

0.90

0.10

Symbol 2
0.884

3

0.84

0.16

Symbol 3

0.866

4

0.92

0.08

Symbol 2

0.691

5

1

Symbol 0
0.890

Back
Pedal

1

0.86

0.14

Symbol 0

0.744

2

0.86

0.14

Symbol 4
0.641

3

0.86

0.14

Symbol 5

0.899

4

0.86

0.14

Symbol 4

0.735

5

1

Symbol 0
0.900

Turn

Left
1

0.86

0.14

Symbol 0
0.903

2

0.70

0.30

Symbol 6

0.901

3

0.88

0.12

Symbol 7
0.902

4

0.77

0.23

Symbol 6
0.902

5

1

Symbol 0

0.903

Step

Left
1

0.75

0.25

Symbol 0
0.902

2

0.89

0.11

Symbol 10

0.718

3

0.90

0.10

Symbol 11
0.747

4

0.88

0.12

Symbol 10
0.701

5

1

Symbol 0

0.902

Run 1

0.84

0.16

Symbol 0
0.903

2

0.86

0.14

Symbol 14

0.774

3

0.90

0.10

Symbol 15
0.442

4

0.86

0.14

Symbol 14
0.563

5

1

Symbol 0

0.885

Step
Right

1

0.83

0.17

Symbol 0

0.903

2

0.88

0.12

Symbol 12
0.893

3

0.92

0.08

Symbol 13

0.646

4

0.88

0.12

Symbol 12

0.892

5

1

Symbol 0
0.903

Turn
Right

1

0.85

0.15

Symbol 0

0.903

2

0.62

0.38

Symbol 8

0.899

3

0.84

0.16

Symbol 9

0.900

4

0.75

0.25

Symbol 8

0.902

5

1

Symbol 0

0.903

Look
Down

1

0.87

0.13

Symbol 0
0.904

2

0.28

0.72

Symbol 0

0.363

3

0.86

0.14

Symbol 19
0.904

4

0.84

0.16

Symbol 19
0.903

5

1

Symbol 0

0.903

Look Up 1

0.86

0.14

Symbol 0
0.903

2

0.26

0.74

Symbol 18
0.625

3

0.84

0.16

Symbol 18
0.904

4

0.80

0.20

Symbol 18

0.903

5

1

Symbol 0
0.903

Center

View
1

0.82

0.18

Symbol 0
0.902

2

0.62

0.38

Symbol 16

0.898

3

0.89

0.11

Symbol 17
0.902

4

0.75

0.25

Symbol 16
0.902

5

1

Symbol 0

0.903

Up /
Jump

1

0.83

0.17

Symbol 0

0.903

2

0.82

0.18

Symbol 20
0.865

3

0.85

0.15

Symbol 20

0.903

4

0.49

0.51

Symbol 20

0.865

5

1

Symbol 0
0.903

Down /

Crouch
1

0.80

0.20

Symbol 0
0.852

2

0.73

0.27

Symbol 21
0.490

3

0.85

0.15

Symbol 22
0.895

4

0.62

0.38

Symbol 21
0.799

5

1

Symbol 0
0.897

Fig. 8. HMM of each 13 gestures: the arrows represent aij , circles are state, bij
′s results

are represented symbol x, which is located under each circles and also is showed that
probability values under that.

Each gesture was recognized by the HMM. Fig. 8 shows the parameter results
for the HMM and HMM models. π is the initial state distribution, aij is the state
transition probability matrix and bij is the output probability matrix.

Consequently, our experimentation shows that the proposed HMM have a
great potential to a variety of multimedia application as well as computer games.

4 Conclusions

We developed a game system using human action that can provide a more con-
venient and intuitive user interface. For recognition of human action, we use a
HMM. Experimental results show reliability of about 90.87% with false recog-
nition of 9.13% and the proposed system is applicable for real game system as
generalized user interface.

108 Hye Sun Park et al.

Acknowledgements

This research was supported by grant No.R05-2004-000-11494-0 from Korea Sci-
ence & Engineering Foundation.

References

1. I. Cohen, N. Sebe, A. Garg, L.S. Chen, and T.S. Huang: Facial expression recognition
from video sequences: temporal and static modeling. Computer Vision and Image
Understanding, Vol. 91 (2003) 160–187

2. H. S. Park et al.: A vision-based interface for interactive computer games. CIRAS,
(2003) 80–84

3. C. S. Lin, C. C. Huan and C. N. Chan et al.: Design of a computer game using an eye-
tracking device for eye’s activity rehabilitation. Optics and Lasers in Engineering,
(2004) 90–108

4. S. Eickeler, A. Kosmala and G. Rigoll.: Hidden Markov Model Based Continuous
Online Gesture Recognition. International Conference on Pattern Recognition, Bris-
bane, (1998) 1206-1208

5. A. Wilson: Adaptive Models for Gesture Recognition. PhD Thesis, MIT, (2000)
6. A. Wilson and A. Bobick: Realtime Online Adaptive Gesture Recognition. Interna-

tional Conference on Pattern Recognition, Barcelona, Spain, (2000)
7. J. Yang, A. Waibel: A real-time face tracker, Applications of Computer Vision.

WACV, vol. 15, no. 1 (1996) 142–147
8. B. W. Min, H. S. Yoon, S. Jung, T. Ohashi and T. Ejima: Gesture based edition

system for graphic primitives and alphanumeric characters. Engineering applications
of Artificial Intelligence, (1999) 429–441

9. X. D. Huang, Y. Ariki and M. A. Jack: Hidden Markov Models for Speech Recog-
nition. Edinburgh. Edinburgh Univ. Press, (1990)

{parksh,jhnah,kyoil}@etri.re.kr

•
•

•
•
•
•

barros@dei.uc.pt

= τ δ λ

τ →
= { ∈ ≤ ≤ τ }
= ∈

δ × φ →
φ ∪ φ

λ → φ

Λ → φ

λ = τ
Λ =

 φ < τ

τ δ

τ
λ

ε ε ε →

= η η

η
η η

η = η η η τη η δ η λη Σ γ

Σ
γ η → Σ

Σ ∈ Σ η ∈ η

Σ = γ η =

η
∈

η ∈ η
η ∉ ∉ ∉

= τ δ λ ∈
δ × →

×
∈

→ ∈ ∪ {η}

≠
=

=

∈
× →

γ

= τ δ λ

nextEventRequest()

timeAdvanceGrant() receiveInteraction()

void receiveInteraction(InteractionClassHandleAndValues msg) {
buffer.add(msg);

}

timeAdvance-

Grant()

timeAdvanceGrant()

void timeAdvanceGrant(const FedTime& time) {
e = time – timeLast;
if(e == model.timeToOutput())

out = model.output();
else

out = null;
model.transition(e,buffer);
buffer.empty();
if(out != null) RTI.sendInteraction(out);
RTI.nextEventRequest(time + model.timeToOutput());
timeLast = time.

}

nextEventRequest()

timeAdvanceGrant()

model.output()

transition()

RTI.sendInteraction(out) nextEventRequest()

= η η

η = τ δ λ Σ γ

δ
δ

publishinter-

actionClass(RTI::InteractionClassHandle aClass)

Γ

π
σ

π × → Γ

σ × → Γ

δ ∴ σ σ +
∴

δ
π π

δ ∴ σ σ −

= ∈ ∧ ≠ ∧ π =
≠

= ∪ ∈ Γ

Γ =

σ π
σ π
σ π

publishInteractionClass() unpublishInter-

actionClass() subscribeInteractionClass() unsubscribeInteraction-

Class()

registerObjectInstance()

updateAt-

tributeValues()

reflectAt-

tributeValues()

discoverObjectInstance()

subscribeObjectClassAttributes()

negotiatedAttributeOwnershipDivestiture()

unconditionallyAttributeOwnership-

Divesture() unsubscribeObjectClass()

attributeOwn-

ershipAcquisition()

attributeOwnershipAcquisitionNotification()

requestAttributeOwnership-

Assumption()

Proposal of High Level Architecture Extension

Jae-Hyun Kim and Tag Gon Kim

Dept. of EECS,
Korea Advanced Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea

jhkim@smslab.kaist.ac.kr, tkim@ee.kaist.ac.kr

Abstract. The paper proposes three dimensional extension to High
Level ARchitecture (HLA) and Runtime Infrastructure (RTI) to solve
several issues such as security, information hiding problem and interop-
erability and performance of RTI software. The hierarchical and modular
design of RTI software provides natural way to form complex distributed
simulation systems and methods to tune performance of federates with
selective and replaceable modules. The extension of specification level
from application programming interface (API) to message-based pro-
tocols makes RTI software communicate each other and even with the
protocol-talking hardware. The extension includes new APIs to the Fed-
erate Interface Specification, improving reusability of federates.

1 Introduction

The High Level Architecture (HLA) [1–3] is the specification for interoperation
among heterogenous simulations. The HLA also focus on reusability of partici-
pating simulations.

Under the HLA, a combined simulation system is called a federation, and the
individual simulation components are called federates. The Runtime Infrastruc-
ture (RTI) is software that implements IEEE 1516.1 Federate Interface Specifi-
cation [2]. It provides a set of services available to the federates for coordinating
their operations and data interchange during an execution.

The HLA has been applied successfully to a military application, especially
for interoperation of distributed training simulators. The HLA is applied not
only to the field of distributed simulation but also to various applications in-
cluding virtual reality, voice over IP, and other generic network applications. A
lot of interoperability and performance related issues have been raised from the
experience of large-scale interoperation between different organizations.

The current HLA does not support multi- or hierarchical federations. The
HLA assumes that there is a single federation. All federates in a single federations
are able to access Federation Object Model (FOM) data. This single federation
does not suffice applications with multiple security levels. This is called Infor-
mation Hiding Problem [5–7].

Besides this problem, a single flat federation is not adequate to model com-
plex systems with hierarchical components [8, 9]. Hierarchical structure of models
or simulators are essential to simulate complex and large systems. To form a hi-
erarchical federation, many methods such as a federation gateway, proxy, bridge

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 128–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proposal of High Level Architecture Extension 129

or brokers have been introduced [6–11]. However, these approaches requires ad-
ditional interfacing entities that are not part of RTI software. To improve the
whole performance of RTI, hierarchical federation scheme should be supported
by RTI itself. Discrete Event System Specification (DEVS) formalism [4] demon-
strates how to model and simulate complex systems with hierarchial structures.
From the concept of DEVS formalism, we define hierarchical architecture of RTI
and functionality of processors in the hierarchy.

Another big limitation is that HLA only specifies a standard services (appli-
cation programming interfaces). The implementation methods or architectural
design of RTI are not part of HLA standard. Although RTI developers are able
to apply their own technology to implement RTI software, lack of standard pro-
hibits interoperation between various RTI software from different vendors. This
is one big drawback because one major goal of HLA is to achieve interoperation
between heterogeneous simulations.

Open RTI protocol will make it possible for different RTIs to communicate
with each other. In addition, a hardware-in-the-loop simulation becomes more
efficient because this protocol enables direct communication between hardware
and RTI. Open RTI Protocol Study Group of SISO is now working on the pro-
posal of an open, message-based protocol. However, the target architecture of
RTI is flat and fully distributed. We propose different RTI protocol designed to
fit in hierarchical architecture.

The performance – speed or size – of RTI software is always a hot issue. RTI
is a kind of middleware so that the performance of RTI greatly affects that of
total system. To meet the requirement of target system, developers should have
methods tune the performance of RTI software.

Normally RTI software is too heavy because it is designed to accommodate
all kinds of services in one library. However, not all applications require all
kinds of management services. Some may not need data distribution management
services, and some only uses receive-order messages. Some applications require
light-weight software to fit into an embedded systems.

Modular architecture of a local RTI component (LRC) makes the federate
lighter and faster. If a federate does not need data distribution management
services, the federate will not load the data distribution management module
at run-time. In addition, the module is replaceable as long as the interface of
the module is the same. A third party is able to develop its own modules with
the open interface of the modules. Users will choose modules that meet the
performance requirements of target federates.

2 Three Dimensional Extension of HLA/RTI

The paper proposes a three dimensional extension of HLA/RTI. Figure 1 shows
the proposed extension. The first dimension is Runtime Infrastructure Software
Design. The original HLA standard does not include any specific descriptions
about implementation of RTI software. However, a detailed standard about ar-
chitecture or protocol is essential to overcome previously discussed issues.

130 Jae-Hyun Kim and Tag Gon Kim

Specification

Level

Message

API

Federate Functionality

Runtime Infrastructure (RTI)

Software Design

• New HLA API & Semantics

• SOM-based Joining Process

• Open RTI Protocol

• Faster Hardware-in-the-Loop Simulation

• Hierarchical Federations

• User-Extensible Modular RTI Design

• Define Interface between Modules

• Replaceable/Selective Module

• Fine Performance Tuning

• Easy Testing of New RTI functionality

• Low Maintenance / Development Cost

Existing
High Level Architecture

Fig. 1. Three Dimensional Extension to HLA/RTI.

The paper proposes the hierarchical and modular design of RTI software.
The hierarchical design of federations provides natural ways to simulate complex
systems. Each federation controls flows of information using an extended FOM
that defines object or interaction classes open to higher level federations.

The modular design of RTI software suggests that RTI software consists of
a set of interconnected modules and the modules are easily replaceable by any
developers. Building a RTI software as a combination of modules from differ-
ent venders of various performance makes it possible to meet the performance
requirements of the target application.

The second dimension is specification level. The existing HLA specifies only
APIs. The proposal extends this standard to message-based protocol level. Com-
bined with the fixed hierarchical architecture of RTI, this protocol defines mes-
sages between entities in the federation hierarchy. Each modules in LRC is re-
sponsible for handling delivered messages destined to the module.

The last dimension is federate functionality. The proposed extension includes
new APIs to give more functionality to federates. The SOM-based joining pro-
cess with the extended join federation execution service [5] is adopted to increase
reusability and modularity of a federate. This method is essential to the hier-
archical structure because a federation is able to change its data filter without
changing FOM of upper-level federation.

3 Hierarchical and Modular Runtime Infrastructure

3.1 Overall Architecture

Figure 2 shows the overall architecture of the proposed hierarchical and modular
RTI. The whole simulation system forms a tree structure and is composed of

Proposal of High Level Architecture Extension 131

Federation (FedEx)

Federation

Federate Federate Federate

Federate Federate Federation

Federate

Federation (FedEx)

Federation

Federate Federate Federate

Federate Federate Federation

Federate

(a) Hierarchical Federations

Presentation

Federation

Management Object

Management

Network Log

Declaration

Management

Ownership

Management Time

Management

Data Distribution

Management
Management

Object

Model

Module

TCP/IP UDP/IP Multicast File Database

IEEE 1516 HLA DMSO 1.3

(b) Modular Structure of Local RTI Component (LRC)

OptionalMandatoryLegend

Fig. 2. Proposed Architecture of Hierarchical and Modular Runtime Infrastructure.

two types of simulation processes – Federation Execution (FedEx) processes and
federates. All leaf nodes are federates and others FedEx processes. Federates only
talk to its associated FedEx process, while the FedEx process exchange data
with its parent, child FedEx processes as well as federates. A FedEx process
coordinates and represents a federation. In addition to the traditional role of
FedEx processes in DMSO RTI, the FedEx process acts as a federate to the
FedEx of higher level.

Figure 2 (b) shows the modular structure of a local RTI component (LRC).
The key idea of this structure is that not all modules are mandatory. Although
HLA provides various kinds of services, most federates only need a partial set
of services. With unnecessary modules eliminated, a federate will have a lighter
code and better performance.

3.2 The Federation Execution Process

The main role of a federation execution process is scheduling and routing of
events.

A federation becomes a federate to the higher level federation. This means
that a FedEx process does not distinguish its child processes. A FedEx process
acts like a federate with minimum lower bound time stamp (LBTS) of the as-
sociated federation. The FedEx process exchanges timing information with its
parent FedEx process as well as its child federates.

132 Jae-Hyun Kim and Tag Gon Kim

The hierarchical federation requires extended FOM. The FOM not only con-
tains the internal data inside the federation, but also includes the filtering in-
formation that which data to send to or receive from higher level federation.
According to extended FOM information, the FedEx process automatically con-
trol the flow of events. The FedEx process forwareds allowed object updates and
interactions to its parent FedEx process.

3.3 Modules of the Local RTI Components

Presentation Module. The presentation module maps HLA APIs to inside
modules. There are two types of APIs – IEEE1516 and DMSO 1.3. DMSO 1.3
version is preliminary to IEEE1516, however, currently more in common due to
free-distribution of RTI software. IEEE1516 and DMSO 1.3 are similar in func-
tionality but function names, data types and some semantics differ. Therefore,
the presentation module for each specification is necessary in order to accom-
modate two HLA specifications,

Network Module. HLA specification requires two types of network transporta-
tion – reliable and best effort service. TCP/IP is currently available for reliable
services and UDP/IP for best effort service. Third type of network transporta-
tion, i.e., multicast, is very useful to deliver data to specified sets of receivers. The
network module should provide APIs for reliable, best effort, multicast trans-
portation to its upper modules. The module is easily extensible to accommodate
new functionality such as quality of service (QoS) support.

Log Module. Logging of internal data or activity is the most valuable tool for
developers. The log module provides an API to produce text outputs to a file
and/or screen. Sometimes, a file output is not enough for a large-scale system.
The database is a good choice to manage large amount of log data. Detailed
implementation issues are up to module developers.

Federation Management Module. There are 13 RTI ambassador services
and 9 federate ambassador callback functions that support federation manage-
ment. Federation management module deals with federation-wide synchroniza-
tion services. Therefore, federation management module controls time and ob-
ject management modules for synchronization purpose. These two modules play
a main role in simulation and are responsible for time advancement and data
exchange. Other modules, however, are rather passive and contain information
for reference. When a synchronizing service begins, the federation management
module notifies it to the two modules. These modules then stop processing and
wait until the completion notification arrives. The federation management mod-
ule keeps the current status of the federation and this federate. It also keeps
statuses of other joined federates.

Declaration Management Module. A declaration management module
should keep the publication and subscription data of the current federate and
subscription data from other federates. Declaration management module cal-
culates the mapping between published data and its subscribers. We assume

Proposal of High Level Architecture Extension 133

the sender-side message filtering. Sender-side message filtering means that a
sender selects receivers before it sends. Therefore, sender-side filtering actually
reduces network usage while it requires more computational power. The declara-
tion management module provides subscriber information of published objects
and interactions to the object management module. The object management
module requires the information when it sends published data. If there is no
declaration module at run-time, the object management module will work as if
all joined federates subscribes all published object in the federate.

Object ManagementModule. An objectmanagementmodule includes SOM-
based joining process [5]. The module keeps object and interaction class hier-
archies and updates them when the federate joins to the federation. The con-
structed class structure is referenced by the declaration management module to
compare relative positions of classes in the hierarchy.

The object management module retrieves subscribers information from the
declaration management and stores it. It also stores registered and discovered
object instances. Management Object Model (MOM) Management services are
initiated by calling object management services with MOM handles. MOM ob-
jects and interactions are treated as same as other objects at the API level. When
the object management module receives service call from presentation manager,
it checks if the specified object instance or interactions belong to MOM. If it
is a MOM request, the object management module forwards the requested ser-
vice to the MOM management module. The object management module should
manage a receive-order queue and a time-stamped order queue. The object in-
stance updates and interactions with time stamp are delivered to time-stamped
order queue. The messages without time stamp are delivered to the receive-order
queue. According to the setting of time management module, it determines when
the messages in the queue are delivered to the federate via federate ambassador
callback services.

Time Management Module. Time management includes time regulation /
constrained option settings and various time update services. Time management
provides 4 combinations of regulation / constrained options and 3 different time
advancement services to the federate. Time management module updates its
logical time whenever the federate requests to advance its time. The time man-
agement module sends time update message to its FedEx process to notify its
logical time. Each federate calculates lower bound time stamp (LBTS) whenever
it receives time update from the FedEx process. The time management module is
responsible to deliver TSO messages. The time module makes the object manage-
ment deliver proper TSO messages in TSO queue. Receive order (RO) messages
are delivered when time management module is in time-advancing mode with
asynchronous delivery option disabled. If the asynchronous delivery option is
enabled or the time module is not in time-constrained mode, the RO messages
will be delivered whenever the federate invoke tick service. Also, if there is no
time management module, the object management module will work as if the
federate is in non-regulating and non-constrained mode.

134 Jae-Hyun Kim and Tag Gon Kim

Ownership Management Module. The ownership management module han-
dles ownership information of all registered and discovered object instances. The
module also processes the algorithm for ownership transfer between joined fed-
erates. The ownership management module notifies the changes in ownership to
the object management so that the object management decides whether to allow
object modification or not. Without the ownership management module loaded,
the object management module allows all attempts to modify any objects known
to the federate.

Data Distribution Management Module. The data distribution manage-
ment module handles the routing space attached to published and subscribed
data classes. Every time the value in the routing space changes, the data dis-
tribution management module calculates the connection between published and
subscribed federates. The connection information is referenced by the object
management module. The object management module uses the connection data
as well as data from declaration management module to decide whether it deliv-
ers data or not. The messages and protocol about data distribution management
is not yet fully specified. Without the data distribution management module
loaded, the object management module decides data delivery only based on the
data from declaration management module.

Management Object Model (MOM) Management Module. The Man-
agement Object Model (MOM) consists of a number of object and interaction
classes through which federates monitor and tune the operation of active federa-
tion. MOM module collects status and activities of other management modules.
The MOM module periodically updates or sends MOM events if it is requested to
do so. All MOM events are delivered via object management module. Therefore,
the direct access to network manager is not required. If there is no active MOM
module, MOM services are not available to all federates in the federation and
MOM events from other federates are treated as ordinary objects or interactions.

4 Open RTI Protocol

This section introduces the proposed Open RTI Protocol that includes message
formats, sequences and their handling algorithms between federates and its as-
sociated FedEx, and between a parent and a child FedEx processes.

A fixed size and format message header, shown in Table 1, precedes each
message. A message content is followed by the header, and is depends on the
message type. The version field indicates the version of the protocol. Sending
federate handle and Receiving federate handle represent federate handle of sender
and receiver, respectively. A federation handle and a federate handle forms an
unique address for a specific federate.

Module field indicates which module should handle the message (see Table 2).
Message Type becomes unique only with Module field. Detailed message types
per modules are presented in the following sections. Message Length field means
total length of message contents not including the message header.

Proposal of High Level Architecture Extension 135

Table 1. Message Header.

Bits Field Value

16 Version 1
16 Sending federation handle 1
16 Sending federate handle 1
16 Receiving federation handle 1
16 Receiving federate handle 0xFF (Broadcast)
8 Module 2 (Federation Management)
8 Message Type 5 (JOIN FEDERATION EXECUTION)
16 Message Length 20 (Bytes)

Table 2. Modules.

ID Module

1 Network
2 Federation Management
3 Declaration Management
4 Object Management
5 Time Management
6 Ownership Management
7 Data Declaration Management

Figure 3 depicts a sample message sequence for object management services.
For simplicity, a federate talks to only its associated FedEx process. The

FedEx process communicate with its parent FedEx process or its child federates
(or FedEx processes).

To register an object, a federate sends REGISTER OBJECT INSTANCE
message to its FedEx process. If the object class is published by the FedEx
process, the message is forwarded to its parent FedEx process. Topmost FedEx
process assigns appropriate object handle and replies the message. Also, Topmost
and middle FedEx processes generate DISCOVER OBJECT INSTANCE mes-
sages to subscribed federates. By this way, all subscribed federates will receive
DISCOVER OBJECT INSTANCE messages.

A message sequence for update attribute value service is simple. FedEx pro-
cesses will forward the message according to publication and subscription status.

5 Extension of API

One way to extend HLA specification is to introduce new APIs to the Federate
Interface Specification. There has been many efforts to add new functionality to
HLA. We have already introduced new join federation execution service to in-
crease reusability of a federate and to eliminate information hiding problems [5].
Real-time extension to HLA includes new semantics on APIs as well as extension
of Framework and Rules and Object Model Template (OMT) [12]. However, care
must be taken because introducing new functionality to the federate may cause
complete re-design of internal structure of RTI.

136 Jae-Hyun Kim and Tag Gon Kim

REGISTER_OBJECT_INSTANCE

DISCOVER_OBJECT_INSTANCE

REGISTER_OBJECT_INSTANCE_ACK

DELETE_OBJECT_INSTANCE

REMOVE_OBJECT_INSTANCE

DELETE_OBJECT_INSTANCE_ACK

UPDATE_ATTRIBUTE_VALUES_(TIME)

Delete

Object

Instance

Register

Object

Instance

Update

Attribute

Values

REGISTER_OBJECT_INSTANCE(If published)

REGISTER_OBJECT_INSTANCE_ACK

UPDATE_ATTRIBUTE_VALUES_(TIME) (If published)

UPDATE_ATTRIBUTE_VALUES_(TIME)

DELETE_OBJECT_INSTANCE

DELETE_OBJECT_INSTANCE_ACK

Federation (FedEx)

Federation(Parent FedEx)

Federate Subscribed Federate

Fig. 3. Message Sequence for Object Management Services between federates and
FedEx processes.

6 Conclusion

The paper proposes an extension of High Level Architecture (HLA). The three
dimensional extension is proposed to solve several issues. The hierarchical ar-
chitecture of federations controls flow of information (or events) so that each
federation in the hierarchy has different level of security. The modular structure
of RTI gives federate developers more flexible designs. Developers are free to
replace modules and even unload unnecessary ones for fine performance tuning.
The open RTI protocol, together with the fixed architecture, help RTI software
from different vendors collaborate each other. A RTI protocol-talking hardware
is able to participate a federation, and the hardware-in-the-loop simulation be-
comes more efficient. The modified join federation execution service is applied
to this proposal. We are planning to add other API extensions to give more
functionality to federates.

Not all RTI protocol and module interfaces are specified so far. We continue
to specify and implement a complete specification of RTI protocol with message
types, formats and their handling algorithms, and interface of modules. The full
implementation of RTI software with hierarchy and modularity leads us to the
base line of research about RTI performance enhancement issues.

Proposal of High Level Architecture Extension 137

References

1. IEEE: IEEE Standard for Modeling and Simulation (M&S) High Level Architec-
ture (HLA) – Framework and Rules. (2000)

2. IEEE: IEEE Standard for Modeling and Simulation (M&S) High Level Architec-
ture (HLA) – Federate Interface Specification. (2000)

3. IEEE: IEEE Standard for Modeling and Simulation (M&S) High Level Architec-
ture (HLA) – Object Model Template (OMT) Specification. (2000)

4. Zeigler, B.P., Praehofer, H. and Kim, T.G.: “Theory of Modeling and Simulation,”
Academic Press (2000)

5. Kim, J.H. and Kim, T.G.: Federate-Level Reusability: Joining a Federation with
SOM Document Data. Proceedings of the 2004 Spring Simulation Interoperability
Workshop. 04S-SIW-141 (2004)

6. Myjak, M.D. and Sharp, S.T.: Implementations of Hierarchical Federations. Pro-
ceedings of the 1999 Fall Simulation Interoperation Workshop. 99F-SIW-180 (1999)

7. Cai, W., Turner, S.J. and Gan, B.P.: Hierarchical Federations: An Architecture for
Information Hiding. Proceedings of the 15th Workshop on Parallel and Distributed
Simulation. (2001)

8. Cramp, A., Best, J. and Oudshoorn, M.: Time Management in Hierarchical Federa-
tion Communities. Proceedings of the 2002 Fall Simulation Interoperability Work-
shop. 02F-SIW-031 (2002)

9. Aoyama, K., Ninomiya, S., Takeuchi, Y., Miyajima, S. and Tsutai, A.: Hierarchical
Multi-Federation Structure of the Sensor Data Fusion Simulation in JUSA. 98F-
SIW-045 (1998)

10. Dingel, J., Garlan, D. and Damon, C.: Bridging the HLA: Problems and Solutions.
Proceedings of the 6th IEEE International Workshop on Distributed Simulation
and Real-Time Application. (2002)

11. Granowetter, L.: RTI Interoperability Issues – API Standards, Wire Standards,
and RTI Bridges. Proceedings of the 2003 European Simulation Interoperability
Workshop. 03E-SIW-077 (2003)

12. Zhao, H. and Georganas, N.D.: HLA Real-Time Extension. Proceedings of the
Fifth IEEE International Workshop on Distributed Simulation and Real-Time Ap-
plications. (2001) 12–21

jslee@inha.ac.kr

chasl@passmail.to, GreenT@usfk.korea.army.mil,
lchongho@lycos.co.kr

cyoun@cs.cnu.ac.kr

sbkwon@ieee.org

ksshin@ewha.ac.kr

<?xml version="1.0" encoding="EUC-KR"?>
<!ELEMENT Cases (Case+)>
<!ELEMENT Case (Characteristics,Determinants)>
<!ATTLIST Case id CDATA #REQUIRED>
<!-- Company Characteristics -->
<!ELEMENT Characteristics (GeneralInfo,SysInfo,Requirement)>
<!ELEMENT GeneralInfo (Biz-

Type,Size,Employee,Sales,ComplexityOfBizProcess)>
<!ELEMENT BizType (#PCDATA)>
<!ATTLIST BizType PubORPrivate (Public|Private) "Private">
<!ELEMENT Size (#PCDATA)>
<!ELEMENT Employee (#PCDATA)>
<!ELEMENT Sales (#PCDATA)>
<!ELEMENT ComplexityOfBizProcess (#PCDATA)>
<!-- -->
<!ELEMENT SysInfo (LegacySystem,Intimacy)>
<!ELEMENT LegacySystem (Link?, Platform?)>
<!ATTLIST LegacySystem Usage (Y|N) "Y">
<!ELEMENT Link (Internal|External)>
<!ELEMENT Internal (#PCDATA)>
<!ELEMENT External (#PCDATA)>
<!ELEMENT Platform (DB,ClientOS,ServerOS)>
<!ELEMENT DB (#PCDATA)>
<!ELEMENT ClientOS (#PCDATA)>
<!ELEMENT ServerOS (#PCDATA)>
<!ELEMENT Intimacy (#PCDATA)>

<?xml version="1.0" encoding="EUC-KR"?>
<!DOCTYPE Cases SYSTEM "cases.dtd">
<Cases>
<Case id="1">
 <Chracteristics>
 <GeneralInfo>
 <BizType PubORPrivate="Public">Leisure</BizType>
 <Size>Middle</Size>
 <Employee>700</Employee>
 <Sales>1000000000</Sales>
 <ComplexityOfBizProcess>Low</ComplexityOfBizProcess>
 </GeneralInfo>
 <SysInfo>
 <LegacySystem Usage="Y">
 <Link>
 <Internal>45</Internal> </Link>
 <Platform>
 <DB>Oracle</DB>
 <ClientOS>Win98</ClientOS>
 <ServerOS>Win2000</ServerOS> </Platform>
 </LegacySystem>
 <Intimacy>High</Intimacy>
 </SysInfo>
 <Requirement>
 <Module No="2">
 <Name>FI</Name>
 <User>200</User>
 <Transaction>100</Transaction>
 <Name>CO</Name>
 <User>200</User>
 <Transaction>100</Transaction> </Module>
 <Decentralization>4</Decentralization>
 </Requirement>
</Charicteristics>

()
=

= =

≠

jklee@sarim.changwon.ac.kr

τ
∩ φ ∞ ∞

→∈

τ → τ

• ≠
≥ •

≠

+−=

×

==

τ
⊆ ∪

τ

∈ ∈ ∈ ∈
∈ ∈ ∈ ∈

∀τ ∈ τ τ τ ∀ ∈

•

τ

∀ ∈

≡

≡

•∈⇔•∈
∃ ∈ ∈ •

⊆ ∈ • ∈ •
⇐ ∈ ∉ ⊄ ∈ ∈ ∈

• •∪∉
∈ =∈

∪=•∪

⊆ ∈ ∉ ⊄

==

γ∈∀

=γμ
γ

γ γ γ
γ μ γ γ γ

γ
γ

γ

=

=++++=

+

=

Simulation of Artificial Life Model
in Game Space�

Jai Hyun Seu1, Byung-Keun Song1, and Heung Shik Kim2

1 Dept. of Computer Engineering, Inje University,
Kimhae, Kyungnam 621-749, Korea
{jaiseu,amidala}@cs.inje.ac.kr
2 Dept. of Computer Engineering,

Institute of Basic Sciences, Inje University,
Kimhae, Kyungnam 621-749, Korea

hskim@cs.inje.ac.kr

Abstract. Game designer generally fixes the distribution and charac-
teristics of game characters. These could not possibly be changed during
playing a game. The point of view at online game player, usually the
game playing time is getting longer. So online game is bored because of
fixed distribution and characteristics of game characters. In this study,
we propose and simulate the system about distribution and characteris-
tics of NPCs. NPCs’ special qualities can be evolved according to their
environments by applying gene algorithm. It also produces various spe-
cial quality NPCs from a few kinds of NPCs through evolution. Game
character group’s movement can be expressed more realistically by ap-
plied Flocking algorithm.

1 Introduction

Types of Computer games have been changing currently. Moreover people pre-
fer to enjoy games with others not alone. As results, people who interested in
same types of game build community. Commonly game planner design and place
specific characteristic NPC (Non Player Character) group on specific location in
the on-line game worlds. By using this kind of method, designer can compose
the map and regulate NPC’s level according to player’s level. Also, they can
create easily NPCs behavior pattern using Finite State Machine [1]. But, this
kind of game design tends to be monotonous and inform the players what the
NPCs range in specific region. Also, NPC attributes are stationary if they are
experienced once.

This paper proposes a system that NPCs’ special qualities can be evolved ac-
cording to their environments by using gene algorithm. This system can produce
various special quality NPCs from a few kinds of NPCs through evolution [2].
NPC group movement can be expressed more realistically by using Flocking
algorithm. If we create NPC groups that move and react against surrounding
groups’ actions. The players may have impressions that seem to receive new
game whenever they play the game.
� This work was supported by the 2000 Inje University Research Grant.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 179–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 Jai Hyun Seu, Byung-Keun Song, and Heung Shik Kim

2 Related Researches

In this chapter, we introduce about flocking algorithm that defines the movement
of groups. Gene algorithm is used on artificial creature’s special qualities. Flock-
ing is action rule algorithm that analyze and defines actions for real lives. We can
simulate movement for NPC groups by using this algorithm. Craig Reynolds in-
troduced flocking algorithm in 1987 and defined by four basis rules of flocking [3].
These four rules are as following.

– Separation: Turn direction not to collide with surrounding Boid.
– Alignment: Indicate direction same as surrounding Boid.
– Cohesion: Turn direction to average position with surrounding Boid .
– Avoidance: Avoid collision with surrounding enemy or stumbling blocks.

Genetic Algorithm is one of optimization techniques based on biologic evo-
lution principle by Darwin’s ‘Survival of the fittest’ [4]. Reproduction process
can create a next generation based upon selection, hybridization and mutation
processes.

1. Selection operator: This arithmetic process selects genes in hybridization.
Some genes that adapt well in their environments are alive. Others are
weeded out.

2. Hybridization operator: This process exchanges their chromosomes in se-
lected pair of gene codes. If there are genes A and B, certain part of chromo-
some will be taken from A and rest part will be taken from B. The specific
parts are decided by random value. This process creates new object. At
this time, characteristics of parents are inherited properly to their children.
Hybridization operator can be divided into more detailed types of hybridiza-
tion. Such as simplicity, one point, plural point and uniformity hybridization
operator.

3. Mutation operator: This process changes a bit in gene code. In binary bit
string, mutation means that toggles bit value. A mutation is just a necessary
process in order not to lose a useful latent ability. A mutation process is
accomplished based on mutation possibility. Generally mutation possibility
is below 0.05.

3 Evolution Compensation Model
of an Artificial Creature

In this chapter, evolution compensation models for NPC will be discussed. The
NPCs move around in Game World. It competes with other NPCs near by, and
tries to be an upper grade one.

In compensation model 1, the predator and food NPC groups will be applied
same compensation model for evolution. Therefore, if certain NPC defeats op-
ponent NPC whether in the same group or not, it will receive same evolution
weight value such as +1. In the other way, defeated NPC’s weight value will be
decreased by −1. So it uses same compensation model and calculates evolution
weight in NPC’s own point of view.

Simulation of Artificial Life Model in Game Space 181

Compensation model 2 is divided into following conditions by attributes of
surrounding environments.

1. Friendly Relation
2. Opposite Relation
3. None

These are applied equally to all NPCs that include competing NPCs as well
as their own. Therefore, if NPC has same attributes value as surrounding en-
vironment attribute, it will have bonus weight value by +1. The other hand,
if it has opposite relation with location of map, it receives bonus weight value
of −1. Finally, in condition that do not influence, it will have as same evolution
weight as in compensation model 1. Differences between compensation model 1
and model 2 is whether it takes effect from surrounding environment or not. In
compensation model 2, if predator NPC has opposite and opponent NPC has
friendly relation, there is possibility that predator NPC loses in competition with
food NPC.

4 System Design and Implementation

In this chapter, we are going to discuss how the system sets characteristic value
for NPCs. How it distributes NPCs on the map automatically. The same rules
are applied to distribution and characteristic grant for NPCs. The rules are as
follows: food chain hierarchy and using map properties. These two rules let NPC
have distinctive distribution and property. Also, distribution and properties will
be continuously changed.

4.1 Distribution Environment

In this paper, four rules of flocking algorithm are applied to our simulation
system. These rules are separation, align, cohesion, and avoidance. NPC group
movement is based on above four rules. Also it makes NPC groups keep inde-
pendent scope even though they are mixed together. However, there is no hierar-
chical relation between NPCs. Another words, NPC does not affect other NPCs
in same class. This kind of relation is unsuitable for applying various NPC’s
characteristics to game. Therefore, competition rule should be applied for same
class NPCs. Also we need chasing and evasion rule for relation between predator
and prey. It is our goal to express real creatures’ movement in our system.

We set elements in base level very simple in our simulation environment.
However, movements will be expressed in various ways according to their inter-
actions among group members and position in map.

Size of a NPC is 1x1 and size of map is 100x100 in simulation environment.
This grating environment has been used for simulation of a capture hover action
[5–8]. In our simulation environment, NPC groups are divided into three hier-
archical levels. There is only one NPC group exist at each class. A number of
groups at each class can be altered according to the experimental environment.

182 Jai Hyun Seu, Byung-Keun Song, and Heung Shik Kim

Table 1. Set Value of Each Class Object.

number of object striking power energy speed

1st Consumer 100 15 50 10

2nd Consumer 25 20 100 20

3rd Consumer 6 30 200 30

But in our environment system, the number of NPC groups should not go over
three groups in total. The number of objects, striking power, energy, and moving
speed values for each class are shown in Table 1.

4.2 Distribution Rules

Each NPC group may move around in the given world (100x100 grating map)
freely. Each NPC do collision check in its 3x3 scope. Each NPC movement is
generated basically by four rules of flocking algorithm. Chase, evasion, and com-
petition rules are added. As a result, the movement will be expressed realistically
as in the natural world. Initially each NPC is distributed at random on the map.
It competes to secure group scope and to evolute. There is limitation and a rule
for competition. They are speed of NPC and its visual limit. When each NPC
moves around in a map, a speed and a visual limit are not fixed in our environ-
ment system. Because they are set up differently at each experiment. However,
if high class NPC recognizes low class NPC as food, it cannot run away from
the high class NPC. Because the low class NPC is always slower than a high
class NPC.

There are ways to run away from a high class NPC. First case is when high
class NPC blocked by barriers. So high class NPC is slowed down. Second case,
if the low class NPC defeats high class NPC, it can run away from a high class
NPC. Then how it defeats high class NPC. The energy of a high class NPC
becomes zero, results of attacked by low class objects. All NPCs have hunger
value. When the hunger value is getting higher than certain point, NPC starts
hunting to bring down hunger value. There is limit for hunting. The number of
NPC that may hunt is three at one hunting time. This prevents extermination
of low class NPC, because the total number of low class NPC is four times of the
total number of high class NPC. All NPCs will reproduce and transfer genetic
code to their children at the extinction. Also, the newly born NPC will have the
protection period that does not get attacked.

4.3 Characteristic Environment

Initially, designer decides characteristics for NPCs based on game character.
The basic characteristic will be developed by competition and influenced by
surrounding environment. Through this process, NPCs mutually evolve in game
space. This is another subject of this paper.

Simulation environment for characteristic of NPCs is not much different from
distribution environment. The main difference is setting on each NPC, not on

Simulation of Artificial Life Model in Game Space 183

Table 2. Required Weight and Awarded Points.

rise weight increase energy increase power

1st Consumer 1 2.5 0.15

2nd Consumer 3 5 0.2

3rd Consumer 3 10 0.3

NPC groups. Each NPC have value of {energy, striking power, level, attribute,
inclination} for its own character. These characteristic values are used to con-
struct genetic code by genetic algorithm. NPCs are awarded certain points when-
ever take victory in competition as shown in Table 2. NPCs will be leveled up
according to those weight value.

The energy and striking power value are influenced by NPC’s level. Hence
physical strength and striking power value goes up along with NPC’s level rise
as shown in Table 2.

Inclination value displays whether NPC’s inclination is offensive or defensive.
NPC’s inclination value could be positive or negative. Positive value expresses
degree of offensive inclination. Negative value expresses degree of defensive incli-
nation. If it beats surrounding NPC in competition, then 1 inclination weight is
given. On the other hand, if it is defeated, -1 inclination weight is given. NPC’s
inclination value is inherited via generation. This NPC’s inclination influences
its group’s inclination.

4.4 Characteristic Rules

In this paper, genetic algorithm transfers attribute of NPC to next generation.
At this point, characteristic of NPC is distinguished by index such as Table 3.
The degree of inclination is presented as numerical value.

The NPC group, which wins in competition continuously, is going to have
offensive inclination. The defeated group is going to have defensive inclination.
To inherit NPC inclination to next generation, NPC’s inclination classified into
attack-first or not-attack-first. They are distinguished by index. The degree of
inclination is expressed as numerical value such as Table 3.

4.5 Genetic Composition

Our simulation system uses genetic algorithm to deliver changes of NPC to
next generation. Genetic code is composed with value of factors. The factors
are energy, striking power, attribute, and inclination. The value of each factor is
composed in 5 digits. Detailed code example is shown in Table 4.

Table 3. Index Numbers for Attribute and Inclination.

ATTRIBUTE INDEX INCLINATION INDEX
AQUA 1 ATTACK FIRST 1
FIRE 2 NO ATTACK FIRST 2

EARTH 3

184 Jai Hyun Seu, Byung-Keun Song, and Heung Shik Kim

Table 4. Genetic Code Of Characteristic.

FACTOR ENERGY ATTACK POWER ATTRIBUTE INCLINATION

Factor Value 200 30 Fire 30 Attack First 150

Genetic Code 00200 00030 20030 10150

The genetic code is used to deliver parents’ characteristic to its child. It also
uses average value from its group characteristic value too. NPC will reproduce
when it disappears. In hybridization, it uses 3 points hybridization operator,
because hybridization point is 3.

5 Experiment and the Analysis Results

5.1 Simulation

In this simulation, the number of NPCs in each group is 100, 25, and 6. The
mutation rate is fixed on 5% for experiment. The experimental model A is com-
parative model that is not applied any compensation model. Each compensation
model contains weight value for character evolution. Compensation model 1
is not concerning any surrounding environment. This model only cares about
special qualities of character. Compensation model 2 concerns surrounding en-
vironment as well as special qualities of character. This difference will show how
NPCs evolve by themselves at what kind of environment.

The distribution rate between groups and characteristic data of NPCs are
being recorded at every frame. Distribution rate is used to calculate how far each
other. It also is used to find out common distributed regions for groups. The
movement of largest group in each class is recorded. Each NPC’s characteristic
is recorded also. The character of each NPC group is presumed upon these data.

As a result of comparing and analyzing special quality data and the distri-
bution rate which recorded in each experiment model. We can evaluate how the
experiment model has evolved spontaneously.

5.2 Graph Analysis

In the graph, you can see the sharp differences in each experiment model. These
differences are detected more clearly between experiment model A and experi-
ment model C. In experiment model A, it ignores all special qualities of NPCs,
but simply uses food chain relation. So it shows that all NPC groups are mixed
and exist all over the map.

On the contrary, in experiment model C, there are many NPCs are gathering
at the particular region which is friendly environment in the map. Also the
primary consumer class NPCs are mainly distributed at the place with friendly
relation. Also we can see that the secondary consumers hesitate to move into the
location where relation is opposite. Even though there exist primary consumers
as food.

Simulation of Artificial Life Model in Game Space 185

1st consumer distribution rate

2nd consumer distribution rate

3rd consumer distribution rate

1st,2nd consumer overlap rate

2nd,3rd consumer overlap rate

3rd,1st consumer overlap rate

Fig. 1. Experimental Results of Model A, B, C.

A difference between experiment model A and experiment model B shows
not much. In experiment model B, each NPC group has been distributed just
by flocking algorithm, because they are designed to use only characteristic of
NPC to compete with. This phenomenon breaks out in experiment model A as
well. But, in experiment model B, overlapped territories does not appear much
as in experiment model A. In experiment model B and experiment model C, the
difference of distribution is similar to the difference in experiment model A and
experiment model C. However, because of the map property, overlapped territo-
ries for groups has been showing as same as in comparison between experiment
model A and experiment model C. Fig. 1 is graphs that show each NPC group’s
distribution and overlap according to their experiment model.

The graph of upper left corner in Fig. 2 is showing how actively each NPC
group moves in the map. The size of 100x100 map is divided into the size of
10x10 gratings. Every grating has its own numbers. The area code in this graph
is the grating number that has the largest quantity of NPC in the same class.
Each NPC group actively moves around according to the movement change of
surroundings. Meanwhile it maintains the movement of every NPC in the group.
Data for the graph of upper left corner in Fig. 2 was taken after twenty gen-
eration. It shows how each group chase opponent group. It follows well enough
as designed. This proves that each generation’s special quality has been trans-
mitted to next generation as special quality by gene algorithm. But, we could
analogize that the attacking power will be changed. Because last graph in Fig. 2
shows that the physical strength change for individuals by generation.

6 Conclusion and Future Research

Game types have been changing to on-line game environment which massive
number of players do enjoying together at same time. Also it is difficult to

186 Jai Hyun Seu, Byung-Keun Song, and Heung Shik Kim

1st consumer

2nd consumer

3rd consumer

Fig. 2. Group Movement, Attack Value, and Energy Value Change.

apply ordinary non-network game element to on-line games to keep up with
development of spreading fast Internet. These problems become an issue more
and more Increasing maintenance expenses could not be ignored. Therefore, it
is not right to decide how to distribute artificial creature and special quality of
game at game designing step. The system better include that distribution and
special quality must be kept on changing by surrounding environment during
the game.

Key points for this system are flocking and gene algorithm that describes
action of living things and how living things evolve in ecosystem according to
their environment. The proposed experiment model in this paper is as following.

– Model A: Experiment model that NPC does not evolve through competition
– Model B: Experiment model that NPC evolves without effect of surrounding

environment
– Model C: Experiment model that is NPC evolves with effect of surrounding

environment

In experiment model A, NPC is distributed by flocking algorithm. There is
no fact about evolution by competition with other living things. But, the model
B and C are competing to evolve. In this model, NPCs have new form of special
quality other than initial special quality. It also shows different group distribution
than the model A. This means that distribution and special quality of NPC
has been altered according to surrounding environment. In this paper, NPC
simulation system has limitation. The number of special qualities and individuals
were minimized to simulate distribution and special quality. But, in actual game

Simulation of Artificial Life Model in Game Space 187

environment, special qualities of NPCs are complicated and very various. It
is different from simulation environment. In real game world, it makes game
server loaded that processing NPC which is influenced by such various special
qualities and complicated surroundings. Therefore, It needs separated artificial
intelligence game server that controls distribution and evolution for NPC. As a
result, players can have impression that seems to play new game always.

References

1. B. K. Song, Design for Intuitive Modeling of FSM Editor, Korea Information Science
Society, 2003: pp458 460

2. B. K. Song, NPC NPC developing system at MMORPG, Inje Journal vol 18.1, 2003:
pp411 418

3. Reynolds, C. W. “Flocks, Herdsm and Schools: A Distribute Behavioral Model, in
Computer Graphics”, SIGGRAPH 87, 1987: 25 34

4. Glodberg, D. E., “Genetic Algorithms in Search, Optimization and Machine Learn-
ing”, Addison-Wesley, ISBN 0-201-15767-5, 1989.

5. Collins, R.J., “Studies in Artificial Evolution”, Phd Thesis, Philosophy in Computer
Science, University of California, Los Angeles, 1992

6. Gutowitz, H. (1993) A Tutorial introduction to Swarm. Technical report, The Santa
Fe Institute. Santa Fr Institute Preprint Series.

7. Kaza, J.R, “Genetic Programming: On the programming of computers by means of
natural selection”, MIT Press, ISBN 0-262-11170-5, 1992

8. Menczer93, F. & Belew, R.K. (1993) Latent energy environments: A tool for artificial
life simulations. Technical Report CS93 298.

An Extensible Framework for Advanced
Distributed Virtual Environment on Grid�

Seung-Hun Yoo, Tae-Dong Lee, and Chang-Sung Jeong��

School of Electrical Engineering in Korea University,
1-5ka, Anam-Dong,

Sungbuk-Ku, Seoul 136-701, Korea
{friendyu,lyadlove}@snoopy.korea.ac.kr, csjeong@charlie.korea.ac.kr

Abstract. This paper describes a new framework for Grid-enabled ad-
vanced DVE (Distributed Virtual Environment) which provides a dy-
namic execution environment by supporting discovery and configura-
tion of resources, mechanism of security, efficient data management and
distribution. While the previous DVEs have provided static execution
environment only considering communication functions and efficient ap-
plication performance, the proposed framework adds resource, security
management, extended data management to static execution environ-
ment using Grid services, and then brings dynamic execution environ-
ment which result in QoS (Quality of Service) enhanced environment
better performance.The framework consists of two components: Grid-
dependent component and Communication-dependent component. Grid-
dependent component includes RM (Resource Manager), SDM (Static
Data Manager), DDM (Dynamic Data Manager), SYM (Security Man-
ager). Communication-dependent component is composed of SNM (Ses-
sion Manager) and OM (Object Manager). The components enhance
performance and scalability through the DVEs reconfiguration consid-
ering resources, and provides mutual authentication mechanism of both
servers and clients for protection of resources, application and user data.
Moreover, effective data management reduces overhead and network la-
tency by data transmission and replication.

1 Introduction

Research and development in DVEs have mainly progressed in two complemen-
tary directions, one addressing the application performance, the other address-
ing communication. While application and communication aspect have been well
recognized and studied by traditional network traffic analysis and performance
evaluation methods, DVE society didn’t consider that the utilization and avail-
ability of resources may change computers and network topology when old com-
ponents are retired, new systems are added, and software and hardware on ex-
isting systems are updated and modified. In large-scale DVE, a large number of
� This work has been supported by KOSEF and KIPA-Information Technology Re-

search Center, University research program by Ministry of Information & Commu-
nication, and Brain Korea 21 projects in 2004.

�� Corresponding author.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 188–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Extensible Framework for Advanced Distributed Virtual Environment 189

participants interact with each other, and many entities are simulated simulta-
neously. Therefore, the continuing decentralization and distribution of software,
hardware, and human resources make it essential to achieve the desired quali-
ties of service (QoS). The effects make DVE society require new abstractions and
concepts that allow applications to access and share resources and services across
distributed networks. It is rarely feasible for programmers to rely on standard or
default configurations when building applications. Rather, applications need to
discover characteristics of their execution environment dynamically, and then ei-
ther configure aspects of system and application behavior for efficient and robust
execution or adapt behavior during program execution. Therefore, an applica-
tion requirement for discovery, configuration, and adaptation is fundamental to
the rapidly changing dynamic environment. We define an execution environment
only considering DVE aspects as static execution environment, and the one con-
sidering both DVE and Grid [1] aspects as dynamic execution environment. The
dynamic execution environment must support the following attributes:

– Heterogeneity: Optimizing the architecture for performance requires that the
most appropriate implementation techniques be used.

– Reconfiguration: The execution environment must allow hardware and soft-
ware resources to be reallocated dynamically. During reconfiguration, the
application data must remain consistent and real-time constraints must be
satisfied.

– Extended data management: Reducing the volume of the traffic of data ex-
changed during communication of the object. For the management of a dy-
namic data, the movement and replication of data will be included probably.

– Security: Both resources and data are often distributed in a wide-area net-
work with elements administered locally and independently, which needs the
intra or inter execution environment security.

This paper is organized as follows. Section 2 outlines CAVERNsoft G2 [4] and
Globus (Grid middleware) [5]. Section 3 presents the architecture of proposed
framework including four managers. Section 4 measures the performance on DVE
for tank simulation as simple application, and compare it with previous DVE.
Section 5 gives a conclusion.

2 Related Works

CAVERNsoft G2 (now called Quanta) was developed with consideration of Grid
which supports the sharing and coordinated use of diverse resources and secu-
rity in dynamic, distributed virtual organizations (VOs) [2]. CAVERNsoft G2 is
an Open Source C++ toolkit for building Distributed networked applications,
whose main strength is in providing networking capabilities for supporting high
throughput Distributed applications.

Regardless of DVE society, Globus toolkit [5] was designed and implemented
to support the development of applications for high-performance distributed
computing environments. The Globus toolkit is an implementation of a bag of

190 Seung-Hun Yoo, Tae-Dong Lee, and Chang-Sung Jeong

Grid services architecture, which provides application and tool developers not
with a monolithic system but rather with a set of standalone services. Each
Globus component provides a basic service, such as authentication, resource al-
location, information, communication, fault detection, and remote data access.
Information services are a vital part of Grid infrastructure, providing fundamen-
tal mechanisms for discovery and monitoring using Globus Resource Allocation
Manager (GRAM), and hence for planning and adapting application behavior [2].
Grid also provides Grid Security Infrastructure (GSI) which offers secure single
sign-on and preserves site control over access policies and local security [3]. GSI
provides its own versions of common applications, such as FTP and remote login,
and a programming interface for creating secure applications.

3 Architecture of the Proposed Framework

The architecture of our proposed framework is shown in figure 1. It has been
developed to provide a common framework for high-performance distributed
applications. It supports managements for inter-application interactions, and
provides services to applications in a way that is analogous to how a middle-
ware provides services to applications. These management are arranged into six
basic managers. The six managers describe the interface between the applica-
tions and CAVERNsoft G2 or Globus or both, which provides a framework for
dynamic execution environment. Managers are divided into two categories as
shown in figure 1: Communication-dependent component (CavernSoft G2) and
Grid-dependent component. The former includes Session Manager (SNM), Ob-
ject Manager (OM) and the latter Resource Manager (RM), Static Data Manager
(SDM), Dynamic Data Manager (DDM), Security Manager (SYM). The man-
agers are implemented based on the architecture of stub and skeleton in proxy
design pattern. Clients create objects in server through object stub/skeleton and
communicate with the objects in server, which is useful wherever there is a need
for a more sophisticated reference to an object than a simple pointer or simple
reference.

…

SNMOM

SYM RM

The proposed framework

GRAM

Globus

MDS GridFTP GSI

CAVERNsoft G2

SDM

Communication-dependent
Component

Grid-dependent
Component

DVE middleware

Applications

DDM

…

SNMOM

SYM RM

The proposed framework

GRAM

Globus

MDS GridFTP GSI

CAVERNsoft G2

SDM

Communication-dependent
Component

Grid-dependent
Component

DVE middleware

Applications

DDM

Fig. 1. The framework architecture.

An Extensible Framework for Advanced Distributed Virtual Environment 191

:Client B :SNM :RM :DM

connection request choose
best server

return
best server

Subscribe data A

Object instance owning data A

Publish data A

:SYM

Data search

Notify the update
of data

:Client A :OM

choose security
level

reply to connection
request

Update the data

Check security level

return security
level

connection request choose
best server

return
best server

choose security
level

reply to connection
request return security

level

Configuration Phase (CP)

Grid-dependent services
- Resource discovery
- (Re)Configuration

Data Communication Phase (DCP)

Communication-dependent services
-Data communication
-- object management

Fig. 2. Scenario.

Figure 2 shows scenario using the proposed framework. We divide the phases
into two phases: Configuration Phase (CP), Data Communication Phase (DCP).
The scenario is started as follows: First, ClientA requests the connection to SNM,
and then SNM forwards the request to RM. RM requests resource information
to MDS, and receives the response from MDS. RM can lock, unlock, allocate,
co-allocate, and synchronize resources. Moreover, RM may specify Quality of
Service (QoS) requirements with clients (applications) may declare the desired
bandwidth using Globus Network Library in CAVERNsoft G2. After RM re-
ceives the security level from SYM, RM responses to the request to SNM. Finally,
ClientA receives the best server information from SNM. When ClientB requests
the connection, the process is repeated identical. After the configuration phase is
ended, the next step is data communication phase. ClientA makes the instance
of object owning any data by using OM, and then ClientB subscribes the data
by using DM. If ClientA publishes the data, ClientB will receive the data. The
relationship between CP and DCP is 1:N because DCP can happen N times
when CP happened one time.

3.1 SDM (Static Data Manager)

For the large-scale distributed simulation on Grid, we divides the data model
into static and dynamic data models. Static data model deals with data for a

192 Seung-Hun Yoo, Tae-Dong Lee, and Chang-Sung Jeong

DATA
SERVER

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Master
Data Manager

Replica
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager Client

Client

ClientClientClient

ClientClient

Client

Client

Client

DATA
SERVER

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Master
Data Manager

Replica
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager Client

Client

ClientClientClient

ClientClient

Client

Client

Client

DATA
SERVER

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Master
Data Manager

Replica
Manager

Static
Data

Static Data
Manager

Master
Data Manager

Replica
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager

Static
Data

Static Data
Manager ClientClient

ClientClient

ClientClientClientClientClientClient

ClientClientClientClient

ClientClient

ClientClient

ClientClient

Fig. 3. client-server hierarchical model.

simulated environment such like terrain data, entity data and generally statically
handled data. Dynamic data model uses data for the presentation of object state
and behavior which are exchanged by the clients. For the management of the
static data, static data model uses shared distributed model using client-server
database. The overall structure composes of client-server hierarchies based on
geographical location, and provides a scalable infrastructure for the management
of storage resources across Grid environments. Figure 3 shows the hierarchical
structure. SDM is connected to one or more clients, which in turn is connected to
Master SDM called Data server which runs on grid environment. SDM provides
the service about static data with clients by transmitting and storing them
among clients. Master SDM sends distributed static data and shows information
about them through a data catalog to clients. The data catalog does not store real
distributed and replicated data but stores metadata for the data. Master SDM
updates new information stored in data catalog, and manages it in transparent
way. Data catalog contains the information of the replicated data. In large-scaled
Grid environment, many clients are scattered geographically, and there arises the
need for the replication of data due to the network bandwidth or long response
time. Replica manager in SDM creates or deletes replicas at a storage site only
to harness certain performance benefits of policies like communication efficiency.

3.2 DDM (Dynamic Data Manager)

DVE provides a software system through which geographically dispersed people
all over the world may interact with each other by sharing in terms of space,
presence, time [8]. The key aspect is scalability for interactive performance, be-
cause a large numbers of objects likely impose a heavy burden especially on
the network and computational resources. Dynamic data occurs continuously
for maintenance and consistency of the virtual world, and largely occupy the
bandwidth of the network. Therefore, the dynamic data greatly determines the
scalability of DVE and the number of participants. So, we proposes a multiple-
server structure for a dynamic data model based on the virtual world. Each
server is responsible for handling a segmented region of the virtual world for
a characteristic of activity or event that happen in the virtual world. Figure 4

An Extensible Framework for Advanced Distributed Virtual Environment 193

A B

D

E F

Networked Virtual World

�

�

�

�

�

�

�

�

�

�

�

�

	

��

��

��Dynamic
Data

Manager

Dynamic
Data

Manager

Dynamic
Data

Manager

Server A

Server B

Server C

client client

client

client

C

A B

D

E F

Networked Virtual World

��

��

��

��

��

��

��

��

��

��

��

��

		

����

����

����Dynamic
Data

Manager

Dynamic
Data

Manager

Dynamic
Data

Manager

Server A

Server B

Server C

client client

client

client

C

Fig. 4. Region segmentation and allocated multicast address.

shows the features how to divide a network virtual environment. Statically a
virtual world is divided based on the visibility of each objects, each region is al-
located one multicast address. Each server has a DDM which manages dynamic
objects generated by clients connected to it, and share the information of with
the clients connected to other DDMs. DDM operated in a server A, is managing
four objects (1,2,3,4). Object 1 and 2 are active in region A, and object 3 in
region D. Each of those object is managed by the same DDM regardless of its
location until becomes extinct. Four objects (1,2,3,4) send their own dynamic
data to their corresponding DDM which in turn distributes the data into other
regions where the objects resides by sending the multicast address of each re-
gion. In case of DDM in Server A, data on 1 and 2 are sent to the multicast
address of region A, while object of 3 and 4 are sent to the multicast address
of region D and C respectively. DDM must join all the multicast groups which
exist on the network virtual environment, and receives dynamic data from other
DDMs. DDM filters the information, and only receives those from the regions
where its managing objects resides, delivery them to the corresponding object.
Therefore, each object receives dynamic information from other objects in the
same region as it resides. Such region-based connection reduces network latency
and bottleneck phenomenon which might be concentrated to the server.

3.3 SYM (Security Manager)

We are interested in DVE applications based on the proposed framework that in-
tegrates geographically distributed computing, network, information, and other
systems to form a virtually networked computational resources. Computations
span heterogeneous collections of resources, often located in multiple administra-
tive domains. They may involve hundreds or even thousands of processes having
security mechanism provided by GSI modules in Globus. Communication costs
are frequently critical to performance, and programs often use complex com-
putation structures to reduce these costs. The development of a comprehensive
solution to the problem of ensuring security in such applications is clearly a
complex problem.

194 Seung-Hun Yoo, Tae-Dong Lee, and Chang-Sung Jeong

4 Experiments

The experiment evaluates DVE based on the proposed framework, and compare
it with the existing DVE using only CavernSoft G2. Figure 5 shows the spec-
ification of six Linux servers which are used in the experiment and other test
conditions. First experiment is that a tank moves the same path on each server,
and measure the execution time. Second experiment is that dynamic interactions
of objects using proposed framework happen, and we measure data number.

12825651210245121024Memory

(Mbytes)

5008501000170022002400Clock

(MHz)

Pentium
�

Pentium
�

Pentium
�

Pentium
�

Pentium
�

Pentium
�

CPU

Redhat
8.0

Redhat
9.0

Redhat
8.0

Redhat
9.0

Redhat
8.0

Redhat
9.0

OS

Server-6Servier-5Server-4Server-3Server-2Server-1

12825651210245121024Memory

(Mbytes)

5008501000170022002400Clock

(MHz)

Pentium
�

Pentium
�

Pentium
�

Pentium
�

Pentium
�

Pentium
�

CPU

Redhat
8.0

Redhat
9.0

Redhat
8.0

Redhat
9.0

Redhat
8.0

Redhat
9.0

OS

Server-6Servier-5Server-4Server-3Server-2Server-1

Test Conditions :
* One object transmits 100byte packet per update � 100 byte/object
* 10 update/sec per one object are happened � 1kbyte/sec
* 800 Object are experimented � 800Kbyte/sec
* Network : 100 Mbps(LAN)

Fig. 5. Specification of Servers and Test Condition.

4.1 Evaluation of Configuration Phase (CP) and Data
Communication Phase (DCP) Between a Server and a Client

Our scenario is divided into two parts: CP and DCP. The purpose of CP is to
find a server which has the best performance. Performance difference according
to the proper server assignment server has been examined by measuring the
response time before the measurement of the time required in CP. The scenario
is that the clients connect to each server on Grid environments and execute a
tank simulation game. In DVEs, tank moves the fixed path on same map and
we measure the time at fixed location (L1, L2, L3 and L4) on each path. Screen
shot is shown in Figure 6. Figure 7 shows the result of execution that measures
the time in fixed four locations on moving path. For security, authentication

L1

L4

L3

L2

L1

L4

L3

L2

Fig. 6. Experiment 1.

An Extensible Framework for Advanced Distributed Virtual Environment 195

Fig. 7. The result of Experiment 1.

time is spent in L1. Figure 7 shows the difference of 1.9 second according to
server performance. As a result, authentication and information service spend a
little time. It is much smaller than the total time consumed in DVEs, and the
authentication and server assignment at that time interval plays an important
role to enhance the overall performance.

4.2 Evaluation of SDM and DDM on Many Servers

SDM and DDM are related to the data communication of objects. We measure
the number of packets from group A to group D shown in Figure 8. The shorter
object distance is, the more data communication happens. The more it takes
time, the more dynamic data happen. The experiment scenario is as follows:
800 tanks are located at fixed places. Each tank does not interact with another
tank because the distance between two tanks is longer than interaction distance
like shown figure 8(a). As time goes on, tanks move. First, the group with two

Fig. 8. Scenario of Tank Simulation.

196 Seung-Hun Yoo, Tae-Dong Lee, and Chang-Sung Jeong

interacting tanks is shown in figure 8(b). As interactions increase, processing
time is increased, which decreases the data packet transfer rate. After group B,
six tanks are grouped into one interaction group. Group C makes the data traffic
more, but the processing time is needed more. Finally, 12 tanks are gathered into
one group, which makes the data traffic busy with maximum processing time.
As a result, more processing time reduces the data transfer rate. The testbed is
composed of six servers and four clients. In testbed with only CavernSoft G2,
four clients connects to fixed four servers (Server-2, 3, 5, 6). In testbed with
proposed framework, four clients connect to session manager. After connection,
each client connects to best servers.

Fig. 9. The result of DVEs and DVEs on Grid.

Figure 9 shows the number of packets measured in DVEs using CAVERNsoft
for both cases without and with our proposed framework. The number of packets
with proposed framework is identical as time goes on, but that without proposed
framework goes down as time goes on. The main reason of performance difference
is that the proposed framework selects and allocates the best server among many
servers, and it provides management of separately dynamic data.

5 Conclusion

This paper has described a new framework for Grid-enabled Distributed Vir-
tual Environment which supports both the discovery, configuration of resources
and the mechanism of security. The proposed framework has provided dynamic
execution environment which consists of two components: Grid-dependent com-
ponent and Communication-dependent component. Grid-dependent component
includes RM (Resource Manager), SYM (Security Manager), SDM (Static Data
Manager) and DDM (Dynamic Data Manager). Communication-dependent com-
ponent composed of SNM (Session Manager) and OM (Object Manager). En-
abling dynamic execution environment for large-scaled DVE with components:
RM has knowledge of all hosts in the same VO (Virtual Organization) which will

An Extensible Framework for Advanced Distributed Virtual Environment 197

be allocated to the clients with rather better policies. SYM provides for enabling
secure authentication and communication over the DVE, including mutual au-
thentication and single sign-on. According to the classification of data model,
SDM and DDM provide efficient data management about the static data and dy-
namic data. To support that the proposed framework increases performance, we
did two experiments. First, we measured the execution time between a server and
a client. The result showed that the server with better specification provides the
better performance. In second experiment, we investigated the number of packets
by increasing the interactions among objects. It showed that the method with
proposed framework in this paper has an advanced performance than method
which uses only communication (CavernSoft G2) component. In future, we are
going to improve the proposed framework with Data Grid for widely distributed
data management.

References

1. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications, 15(3), 2001.

2. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-
vices for Distributed Resource Sharing. in Tenth IEEE Int’l. Symposium on High-
Performance Distributed Computing (HPDC-10), San Francisco, California, August
2001.

3. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Com-
putational Grids. Proc. 5th ACM Conference on Computer and Communications
Security Conference, pp. 83-92, 1998.

4. K. Park, Y.J. Cho, N. Krishnaprasad, C. Scharver, M. Lewis, J. Leigh, A. Johnson.
CAVERNsoft G2: a Toolkit for High Performance Tele-Immersive Collaboration.
ACM 7th Annual Symposium on Virtual Reality Software & Technology (VRST),
Seoul, Korea, 2000.

5. I. Foster and C. Kesselman. The Globus Project: A Status Report. In Proceedings
of the Heterogeneous Computing Workshop, pages 4-18, 1998.

6. Allcock, W., et al. Data Management and Transfer in High-Performance Computa-
tional Grid Environments. Parallel Computing, 2001.

7. A. Boukerche and A. Roy, In search of data distribution management in large scale
distributed simulations, in “Proc. of the 2000 Summer Computer Simulation Con-
ference, Canada,” pp. 21-28.

8. S. Han and M. Lim, ATLAS-II: A Scalable and Self-tunable Network Framework for
Networked Virtual Environments, The Second Young Investigator’s Forum on Vir-
tual Reality (YVR2003), Phoenix Park, Kangwon Province, Korea, 12-13 February,
2003.

kijima@valdes.titech.ac.jp
http://www.valdes.titech.ac.jp/~kk-lab/

http://www.boozallen.jp/contactus/contactus.html

{ }

{sunpark,parksangho}@datamining.inha.ac.kr, juhong@inha.ac.kr

leejs@kunsan.ac.kr

×

•
=

=×=

= ×
=

×
=

=

×=

α α
α α ∈ μ ≥ α

× →
× →

→ ∨
⊆ ∀ ∈ → ∈

∈℘ ℘
⊆ ∈℘ μ℘

→
μ℘

μμμ →∧=
∈℘

×
×

∈ ∈

() ()→=

∈

∈ μ μ
∈ ∈

μ μ ∈
∈

∈

μμπ →=⊆
∈

π ♦

π ⊆

π ⊆
μ

⊆

π β ⊆

() () ()
∈

→==⊆
ββ

ββπ

β β βμ ≥ β

β × μ ∈

β π β ⊆ β π β

⊆ β

β α

β α

α

β

β α

α α

α α

α

α

α

α

α

kitakubo@degulab.cs.dis.titech.ac.jp,
{koyama,deguchi}@dis.titech.ac.jp

=
=

ℜ→

∈∀←

∈ =
∈

∈

→×←
ℜ→

−

− −−−

−

−
−−

−
×+×−← αα

+

×+=+

−

−− ≤>=

−

−− ≤>=

=

×−−×= +

+=
()=

=
>
<

=

=

−=

=

=

−−==
−

−−

<

−∈+
−

×+×−←
−

−
−− αα

− − ∈
σ

σ

{jinun,kic}@kyonggi.ac.kr

−
−
−
−

δ δ λ

δ δ
λ �

δ δ τ λ
τ

τ

•
•
•
•

•
•
•

•
•

http://www.sce.carleton.ca/faculty/wainer/

State Minimization of SP-DEVS

Moon Ho Hwang and Feng Lin

Dept. of Electrical & Computer Engineering, Wayne State University,
Detroit, MI, 48202, USA

mhhwang@kalman.eng.wayne.edu, flin@ece.eng.wayne.edu

Abstract. If there exists a minimization method of DEVS in terms of
behavioral equivalence, it will be very useful for analysis of huge and
complex DEVS models. This paper shows a polynomial-time state min-
imization method for a class of DEVS, called schedule-preserved DEVS
(SP-DEVS) whose states are finite. We define the behavioral equivalence
of SP-DEVS and propose two algorithms of compression and clustering
operation which are used in the minimization method.

1 Introduction

From the discrete event system specification (DEVS) [1] schedule-preserved
DEVS (SP-DEVS) has been modified so that the behavior of coupled SP-DEVS
can be described as atomic SP-DEVS whose states space is finite [2]. Even though
there exists an atomic SP-DEVS whose behavior is equivalent to that of SP-
DEVS networks, if we can minimize the state space of atomic SP-DEVS, it will
be practically useful to identifying its qualitative and quantitative properties [2]
of huge and complex systems.

When trying to show decidability of behavioral equivalence between regular
languages, testifying their structural equivalence of two finite state automata
(FSA) generating the regular languages is more practical than comparing two
languages themselves, because the languages may have the infinite number of
words [3], [4]. This approach seems to be applicable to state-minimization of
DEVS (SP-DEVS) whose states are finite.

But there is one big difference between FSA and SP-DEVS. Every single state
transition of FSA is invoked by an external event so a state transition is observ-
able. In SP-DEVS [2] however, there is an internal state transition which occurs
according to the time schedule. Moreover, when an internal state transition hap-
pens there may be no output generated so the transition is unobservable outside.
Since the behavior of SP-DEVS is defined as a set of observed event sequences
with its happening time, such an unobservable internal event is obstructive when
applying direct comparison of states as in FAS.

Thus we propose a two-step procedure for state minimization as shown in
Fig. 11. The first step in the proposed procedure is compression in which SP-
DEVS is modified so that unobservable internal state transitions are eliminated
1 The proposed procedure assumes that its input is an atomic SP-DEVS. If the tar-

get we want to minimize is a coupled SP-DEVS model, then we can apply time-
translating equivalent (TTE) minimization introduced in [2].

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 243–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

244 Moon Ho Hwang and Feng Lin

Fig. 1. Two Steps Procedure of State Minimization.

as much as the behavior is preserved (Section 3). The compressed SP-DEVS is
used as the input to a clustering step in which behaviorally equivalent states are
clustered as one, then the minimized SP-DEVS whose states are clusters can be
constructed (Seciont 4). Finally, this article shows that we will always achieve
the state-minimized SP-DEVS in polynomial time (Section 5).

2 Behavioral Equivalence of SP-DEVS

2.1 Timed Language

Given an arbitrary event set A, we can then consider a situation that an event
string ā ∈ A∗ occurs when time is t ∈ T = R+∞

0 (non negative real numbers
with infinity) where A∗ is the Kleene closure of A [3]. A timed trajectory is
ω : T → A∗ and a timed word is a timed trajectory restricted to an observation
interval. We write it as ω[ti,tf] or ω : [ti, tf]→ A∗, in which ti, tf ∈ T s.t. ti ≤ tf .
For representing the boundary condition, we use ‘[’ or ‘] for a closed boundary
while ‘(’ or ‘)’ for the open. In this paper, the timed empty word within [ti, tf],
denoted by ε[ti,tf], is that ω(t) = ε for t ∈ [ti, tf] where ε is the nonevent or the
empty string.

A pair of segments ω1 ∈ ΩA[t1,t2] and ω2 ∈ ΩA[t3,t4] are said to be contiguous
if t2 = t3. For contiguous segments ω1 and ω2 we define the concatenation
operation ω1 ·ω2 : [t1, t4]→ A∗ such that ω1 ·ω2(t) = ω1(t) for t ∈ [t1, t2), ω1(t) ·
ω2(t) for t = t2, ω2(t) for t ∈ (t3, t4] where ω1(t) · ω2(t) is the concatenation of
the event string. If there is no confusion, we will omit ‘·’ so ω1ω2 is the same as
ω1 · ω2.

For each td ∈ T , we define a unary operator on the segment, translation
operator TRANStd

such that if there is ω[ti,tf] = (t0, ā0)(t1, ā1) ∈ ΩA then
TRANStd

(ω[ti,tf]) = ω[ti+td,tf+td] = (t0 + td, ā0)(t1 + td, ā1). For concatenation
of two discontiguous segments such as ω1[t1,t2], ω2[t3,t4] where t2 �= t3, we can
apply the translation operator to ω2 for making them contiguous and then apply
the contiguous concatenation.

A timed language over A in [ti, tf] is a set of timed words over A in [ti, tf].
The universal language over A in [ti, tf] is the set of all possible timed words
over A in [ti, tf], denoted by ΩA[ti,tf].We will omit the time range of a timed
word such as ΩA when the time range is the same as [0,∞).

State Minimization of SP-DEVS 245

2.2 Formal Definition of SP-DEVS

Definition 1 (SP-DEVS). A model of SP-DEVS is a 9-tuple,

M =< X, Y, S, ta, δx, δτ , λ, S0, SF >

where,

– X(Y) is a finite set of input (output) events.
– S is a non-empty and finite states set. S can be partitioned into two sets:

rescheduling states set Sτ and continued scheduling states set Sc such that
Sτ ∩ Sc = ∅ and Sτ ∪ Sc = S.

– ta : S → Q
+,∞
0 is the maximum sojourning time to the next scheduled state

where Q
+,∞
0 denotes a set of non-negative rational numbers with infinity.

– δx : S ×X → Sc is the partial external transition function.
– δτ : S → Sτ is the partial internal transition function.
– λ : S → Y ε is the partial internal output function where Y ε means Y ∪ {ε}.
– S0 ⊆ Sτ is a set of initial states.
– SF ⊆ S is a set of acceptable states.

2.3 Timed Languages of SP-DEVS

Given M =< X, Y, S, ta, δx, δτ , λ, S0, SF >, the total states set Q = {(s, r)|s ∈
S, 0 ≤ r ≤ ta(s)} considers the remaining time r at s ∈ S. Based on the total
state set, the state transition function δ : Q × Xε → Q is represented by two
state transition functions: for (s, r) ∈ Q, x ∈ Xε, δ((s, r), x) = (δx(s, x), r) if x ∈
X ∧ δx(s, x) ⊥;2 (δτ (s), ta(δτ (s))) if x = ε ∧ r = 0 ∧ δτ (s) ⊥; (s, r) otherwise.

Then the active state trajectory function δ̂ : Q×ΩX → Q is a partial function
such that for q ∈ Q, ω = (t, x) where x ∈ Xε and t ∈ T, δ̂(q, ω) = q if x =
ε; δ(q, x) if x ∈ X ∧ δ(q, x) �= q; is undefined otherwise. Now suppose that

ω1 = ω2(t, x), x ∈ Xε, ω1, ω2 ∈ ΩX and t ∈ T . Then for q ∈ Q, δ̂(q, ω1)
def
=

δ̂(δ̂(q, ω2)(t, x))).
Finally, the event trajectory over X ∪ Y is described by a IO trajectory

function γ̂ : Q × ΩX → ΩX∪Y such that for x ∈ X, (s, r) ∈ Q and ω, ω2 ∈ ΩX ,
γ̂(q, ω) = (t, x) if ω = (t, x); (t, λ(s)) if ω = (t, ε) ∧ r = 0; γ̂(q, ω2)(t, x) if ω =
ω2(t, x) ∧ δ̂(q, ω2) ⊥; γ̂(q, ω2)(t, λ(s′)) if ω = ω2(t, ε) ∧ δ̂(q, ω2) ⊥ ∧ r′ = 0; is
undefined otherwise, where δ̂(q, ω2) ⊥ then δ̂(q, ω2) := q′ = (s′, r′).

Now we are ready to define the two languages associated with SP-DEVS.
The language generated from s of M , denoted by L(M(s)) ⊆ ΩX∪Y , is that

L(M(s)) = {γ̂((s, ta(s)), ωx)|ωx ∈ ΩX , δ̂((s, ta(s)), ωx) ⊥}. (1)

For example, for M1 shown in Fig. 2, L(M1(s1)) = {(t0, ?x1), (t0, ?x1)(t1, !y1) s.t.
0 ≤ t1− t0 ≤ 2}. Then the generated language of M , denoted by L(M) ⊆ ΩX∪Y ,
is that L(M) =

⋃
s∈S0

L(M(s)).

2 ⊥ indicates that the associated function is defined. For example, δx(s, x) ⊥ means
that δx(s, x) is defined.

246 Moon Ho Hwang and Feng Lin

In this paper, circles denote states (solid: s ∈ Sτ and dashed: s ∈ Sc), double circles
indicate acceptable states, a number inside a state s is ta(s), arcs are state transitions
(solid: internal, dashed: external) with ?(!) which indicates an input (output) event.

Fig. 2. SP-DEVS Models.

The language marked from s of M , denoted by Lm(M(s)) ⊆ L(M), is that

Lm(M(s)) = {γ̂((s, ta(s)), ωx)|ωx ∈ ΩX , δ̂((s, ta(s)), ωx) ∈ QF }. (2)

where QF = {(s, r)|s ∈ SF , 0 ≤ r ≤ ta(s)}. For example, for M1 shown in Fig. 2,
Lm(M1(s1)) = {(t0, ?x1)(t1, !y1) s.t. 0 ≤ t1− t0 ≤ 2}. Then the marked language
of M , denoted by Lm(M) ⊆ L(M), is that Lm(M) =

⋃
s∈S0

Lm(M(s)).
Before discussing minimization based-on observational equivalence, we would

like to focus our interest on a class of SP-DEVS as follows. Our interesting SP-
DEVS here is proper (1) if ta(s) = 0, for s ∈ Sτ then λ(s) �= ε and (2) using
ta(s) = ∞ instead of an internal self-looped state s ∈ Sτ such that δτ (s) =
s∧λ(s) = ε∧∀x, δx(s, x) is undefined. For example, M1 and M2 shown in Fig. 2
are proper, but M3 is not because it violates (2) condition. We are recommended
to use M2 rather than M3. From now on, all SP-DEVS is supposed to be proper
in this paper.

2.4 Behavioral and Observational Equivalence

From the definitions of languages associated with SP-DEVS, we define the be-
havioral equivalence another equivalence, called observational equivalence.

Definition 2. Let M =< X, Y, S, ta, δx, δτ , λ, S0, SF > and s1, s2 ∈ S. Then
s1 is said to be behavioral equivalent to s2, denoted by s1

∼=b s2 if L(M(s1)) =
L(M(s2)) and Lm(M(s1)) = Lm(M(s2)).

For example, for M1 of Fig. 2, L(M1(s1)) = L(M1(s4)) and Lm(M1(s1)) =
Lm(M1(s4)) so s1

∼=b s4.
Another way to show the behavioral equivalence is showing observational

equivalence. For symbolic representation of an active state trajectory with an
associated word, we use s1

ω→ s2 denoting that δ̂((s1, ta(s1)), ωx) = (s2, r
′) and

γ̂((s1, r), ωx) = ω where s1, s2 ∈ S, r ∈ T , ωx ∈ ΩX and ω ∈ ΩX∪Y while
s1 � ω→ denotes that neither δ̂((s1, ta(s1)), ωx) nor γ̂((s1, ta(s1)), ωx) is defined.

For example, M2 of Fig. 2, s1
(2,!y1)−→ s2 but s4 �(2,!x1)−→ . By symbolic representation

of active state trajectories, we define the observational equivalence as follows.

State Minimization of SP-DEVS 247

Definition 3. Let M =< X, Y, S, ta, δx, δτ , λ, S0, SF >. For s1, s2 ∈ S, s1 is
said to be observationally equivalent to s2, denoted by s1

∼=o s2 if ω ∈ ΩX∪Y ,
s1

ω−→ s′1 ⇔ s2
ω−→ s′2 and s′1 ∈ SF ⇔ s′2 ∈ SF .

Lemma 1. Let M =< X, Y, S, ta, δx, δτ , λ, S0, SF > and s1, s2 ∈ S. The s1
∼=b

s2 if and only if s1
∼=o s2.

Proof of Lemma 1. (If Case:) Suppose s1
∼=o s2 then ω ∈ ΩX∪Y , s1

ω−→ s′1 ⇔
s2

ω−→ s′2. That is, L(M(s1)) = L(M(s2)). Moreover, if s1
∼=o s2 then s′1 ∈

SF ⇔ s′2 ∈ SF ⇒ Lm(M(s1)) = Lm(M(s2)). Thus s1
∼=o s2 ⇒ s1

∼=b s2

(Only If Case:) Let L(M(s1)) = L(M(s2)). Suppose ∃w ∈ ΩX∪Y : s1
ω−→ s′1

but s2 � ω→ then L(M(s1)) ⊃ L(M(s2)). Similarly, if ∃w ∈ ΩX∪Y : s2
ω−→ s′2 but

s1 � ω→ then L(M(s1)) ⊂ L(M(s2)). Thus for ω ∈ ΩX∪Y , s1
ω−→ s′1 ⇔ s2

ω−→ s′2.
Suppose that ω ∈ ΩX∪Y , s1

ω−→ s′1 ⇔ s2
ω−→ s′2 but s′1 ∈ SF �⇔ s′2 ∈ SF .

This means Lm(M(s1)) �= Lm(M(s2)) and it contradicts. Thus s1
∼=b s2 ⇒

s1
∼=o s2. �
So sometimes we will use the observational equivalence instead of the behav-

ioral equivalence.

3 Compression

An internal state transition without generating any output can not be observed
outside so it should be eliminated as far as the behavior of SP-DEVS can be
preserved. This section addresses compression operation, the condition of com-
pression for preserving behavior, completeness, and complexity of a compression
algorithm.

3.1 Identifying Compressible States

Compression is merging two states connected with an internal transition. Given
M =< X, Y, S, ta, δx, δτ , λ, S0, SF >, a function δ−1

τ : S → 2S is used for the
internal source states to q ∈ S such that δ−1

τ (q) = {p ∈ S|δτ (p) = q}. For
example, in Fig. 3(a), δ−1

τ (s3) = {s1} and δ−1
τ (s4) = {s2}.

Definition 4 (Compression). Given M =< X, Y, S, ta, δx, δτ , λ, S0, SF >
and s ∈ S, Compression(M, s) is that ∀s−1 ∈ δ−1

τ (s) s.t. s−1 �= s
(1) δτ (s−1) := δτ (s); (2) ta(s−1) := ta(s−1) + ta(s); (3) λ(s−1) := λ(s);
(4) remove s from S (and SF if s ∈ SF);

From this operation, we introduce a condition in which even after applying
the compression operation, the behavior is preserved.

Definition 5 (Compressibility). Let M = <X, Y, S, ta, δx, δτ , λ, S0, SF >.
Then s ∈ S, s �∈ S0 is said to be compressible, if ∀s−1 ∈ δ−1

τ (s) s.t. s−1 �= s, for
ω1 ∈ ΩX[0,ta(s−1)), ω2 ∈ ΩX[0,ta(s)), P

U (ω1) = PU (ω2)

248 Moon Ho Hwang and Feng Lin

Fig. 3. Compressible or Not.

1. s−1 ω1−→ s−1
x ⇔ s

ω2−→ sx

2. δτ (s−1
x) = sx and λ(s−1

x) = ε
3. s−1

x ∈ SF ⇔ sx ∈ SF

where PU : ΩA → A∗ is a untimed projection such that for ω, ω′ and ω′′ ∈ ΩA,
ā ∈ A∗, PU (ω) = ā if ω = (t, ā); PU (ω) = PU (ω′)PU (ω′′) if ω = ω′ω′′. For
example, given A = {a, b} and ω[0,20] = (7.3, a)(9.6, b) then PU (ω[0,20]) = ab.

The state s3 and s4 shown in Fig. 3 (a) are compressible while s3 and s4 in
Fig. 3 (b), (c) are not because they don’t satisfy conditions 1 and Fig. 3 (d), (e)
either because of violation of condition 2 and 3 of Definition 5, respectively.

Now we define a function R : Sτ → 2S is the transited states from s ∈ Sτ such
that for R(s) = {s} initially and it grows recursively R(s) =

⋃
sx∈R(s)

δx(sx, x) if

∃x ∈ X s.t. δx(sx, x) ⊥. For example, R(s3) = {s3, s4} in Fig. 3 (a).

Theorem 1. If s is compressible and Mc is achieved by Compression(M,sx)
∀sx ∈ R(s). Then L(M) = L(Mc) and Lm(M) = Lm(Mc).

Proof of Theorem 1. See Appendix B.

3.2 Completeness and Complexity of a Compression Algorithm

Now we consider algorithms for implementing compression operation. Prior to
proposing an algorithm of testing compressible states, we first define an ac-
tive input events of a state defined by αx : S → 2X such that for s ∈ S,
αx(s) = {x|∃x ∈ X, δx(s, x) ⊥}. Using this function, an algorithm for identify-
ing compressible states is as follows.

SP-DEVS Compression(M :< X, Y, S, ta, δx, δτ , λ, S0, SF >)
1 ∀s ∈ Sτ, ∀sx ∈ R(s), ∀s−1

x ∈ δ−1
τ (sx)

2 if (αx(s−1
x) = αx(sx) ∧ λ(s−1

x) = ε ∧ s−1
x ∈ SF ⇔ sx ∈ SF)

3 Compression(M, sx);
4 return M;

Compression(M) is terminated because the compressible states are elimi-
nated one by one until no more compressible states exist. So we call the re-
sult of Compression of SP-DEVS compressed SP-DEVS or non-compressible
SP-DEVS. And for each state s ∈ Sτ ,sx ∈ R(s) and s−1

x ∈ δτ (sx), testing of
α(sx) = α(s−1

x) ∧ λ(s−1
x) = ε ∧ SF ⇔ sx ∈ SF satisfies all conditions of com-

pressibility. And the pessimistic complexity of Compression(M) is O(|Sτ ||Sc||S|).

State Minimization of SP-DEVS 249

4 Clustering

In this section, the input model is supposed to be the non-compressible SP-
DEVS and we are ready to compare two states p and q in terms of associated
active events, time delay, and acceptance state categorization to test whether
L(M(p)) = L(M(q)) and Lm(M(p)) = Lm(M(q)) or not. A bunch of states
whose behaviors are equivalent to each other is said to be a cluster. Thus states
in a cluster will be merged into one state in the clustering step.

4.1 Identifying Equivalent States

Before introducing an identifying algorithm of equivalent states, we first define
two functions. One is an active events set of a state defined by α : S → 2(X∪Y)

such that for s ∈ S, α(s) = {x|∃x ∈ X, δx(s, x) ⊥} ∪ {λ(s)|λ(s) ⊥}. The other
is a set of input states pairs δ−2 : S × S → 2S×S such that for s1, s2 ∈ S,
δ−2(s1, s2) = {(p1, p2)|δτ (p1) = s1, δτ (p2) = s2} ∪ {(p1, p2)|∃x ∈ X : δx(p1, x) =
s1, δx(p2, x) = s2}.

To find those states that are equivalent, we make our best effort to find pairs
of states that are distinguishable and then cluster indistinguished state pairs as
one state. Following is the algorithm.

ClusterSet Finding Cluster(M :< X, Y, S, ta, δx, δτ , λ, S0, SF >)
1 ∀p, q ∈ S, add (p, q) to IP;
2 ∀(p, q) ∈ IP, if¬(ta(p) = ta(q) ∧ α(p) = α(q) ∧ p ∈ SF ⇔ q ∈ SF)
3 move (p, q) from IP to DP;
4 ∀(s1, s2) ∈ DP, ∀(p, q) ∈ δ−2(s1, s2), if ((p, q) ∈ IP)
5 move (p, q) from IP to DP;
6 NCL := S;
7 ∀p ∈ NCL, CL := ∅; move p from NCL to CL;
8 ∀q ∈ S, if ∃q s.t. (p, q) ∈ IP
9 move q from NCL to CL;

10 append CL to CLS;
11 return CLS;

Completeness and Complexity of Finding Cluster Algorithm. In or-
der to show the completeness of Finding Cluster(M) algorithm, we use the
following theorem.

Theorem 2. Let M =< X, Y, S, ta, δx, δτ , λ, S0, SF > and be a compressed
SP-DEVS model. Then L(M(p)) = L(M(q)) and Lm(M(p)) = Lm(M(q)) if
p, q ∈ CLS of Finding Cluster(M).

Proof of Theorem 2. Initially all pairs of all states are treated as indistinguished
(line 1). As we can see in lines 2 and 3, for each pair (p, q) in IP (indistinguished
pairs), if (1) they have identical maximal sojourning times, (2) have identical
active events set and (3) if p is an acceptance state then so q is and vice versa then
IP can remain in IP . That is, if one of conditions (1),(2), (3) is violated, (p, q)

250 Moon Ho Hwang and Feng Lin

moves to DP (distinguished pairs). So after testing lines 2-3, for (p, q) ∈ IP ,
p

ω→ p′ ⇔ q
ω→ q′ and p′ ∈ SF ⇔ q′ ∈ SF where ω ∈ ΩX∪Y [0,ta(p)).

As we can see lines 4-5, for (p, q) ∈ IP , ∃ω ∈ ΩX∪Y : p
ω→ p′ and q

ω→ q′

such that (p′, q′) ∈ DP , then (p, q) is moved from IP to DP . Thus, after testing
4-5 lines, (p, q) ∈ IP satisfies p

ω→ p′ ⇔ q
ω→ q′ and p′ ∈ SF ⇔ q′ ∈ SF where

ω ∈ ΩX∪Y thus p ∼=o q. By Lemma 1, p ∼=o q ⇒ p ∼=b q ⇒ L(M(p)) = L(M(q))
and Lm(M(p)) = Lm(M(q)).

For finding the cluster, initially NCL (non-clustered states) is assigned as
all states S (line 6). For each state p in NCL, a cluster CL is initialized as {p}
(line 7). For each state q ∈ S, if p ∼=o q, then move q from NCL to the cluster
(lines 8 and 9). After that, the new cluster CL is added to the clusters set CLS
(line 10). According to lines 6-10, each state can be a member of only one cluster
in which all states are behavioral equivalent to each other. �

The complexity of Finding Cluster(M) is O(|S|2) because the testing is based
on state pairs.

4.2 Merging States in Cluster

Since we can find the clusters from a SP-DEVS M by Finding Cluster, the
procedure for clustering based on Definition 6 is so straight-forward, that is
omitted here and it will be easily designed in O(|S|).
Definition 6 (Clustered SP-DEVS).

Suppose SP-DEVS M =< X, Y, S, ta, δx, δτ , λ, S0, SF > is a compressed SP-
DEVS. Then Mm =< X, Y, Sm, tam, λm, δm, Sm

0 , Sm
F > is clustered from M if

Sm = {s ∈ S|∀s′ ∈ S, s ∼=o s′}, Sm
τ = Sτ ∩ Sm; ta = ta|Sm

τ →Q
+,∞
0

; λm =
λ|Sm→Y ε ; δm

x = δx|Sm×X→Sm ; δm
τ = δτ |Sm→Sm ; Sm

0 = Sm ∩ S0; Sm
F = Sm ∩SF .

5 Two-Step Minimization Procedure

Figure 4 illustrates what happens in each step of the proposed whole procedure.
In this example, 6-state compression is performed after the first step and two
clusters consisting of 4 states remain after the second step so the number of states
in the minimized model is two. The following theorem addresses the completeness
and complexity of the proposed procedure.

Theorem 3. The two-step minimization method minimizes the states of SP-
DEVS in polynomial time.

Proof of Theorem 3. The compression eliminates unobservable internal state
transitions which can be compressed, without changing its behavior. In other
words, only unobservable internal state transitions which should be preserved for
identical behavior can remain in the process (See Appendix Lemma 2). There-
fore, if two states are determined as indistinguished in Finding Cluster of Section
4.1, they can be merged into one state by Theorem 2. Since each computational

State Minimization of SP-DEVS 251

Fig. 4. State Minimization Example.

complexity of compression (Section 3.2) and clustering (which consists of finding
clusters (Section 4.1) and merging states in a cluster (Section 4.2)) are polyno-
mial, the whole procedure has also polynomial-time complexity. �

6 Conclusion and Further Directions

This paper proposed a state-minimization method of proper SP-DEVS and
showed the polynomial-time decidability of behavioral equivalence in SP-DEVS
models are guaranteed. We first defined the behavioral equivalence of SP-DEVS,
and proposed two algorithms for compression and clustering, which are used in
the proposed minimization method.

Tough minimization experiments for real systems such as manufacturing sys-
tems, embedded software systems etc, should be tested in the future. And one
possible improvement will be easily achieved in the clustering step by employing
the O(|S|log|S|) algorithm used in finite state automata [4].

References

1. B.P. Zeigler, H.Praehofer, and T.G. Kim. Theory of Modelling and Simulation: Inte-
grating Discrete Event and Continuous Complex Dynamic Systems. Academic Press,
London, second edition, 2000.

2. M.H. Hwang and Su Kyoung Cho. Timed analysis of schedule preserved devs. In
A.G. Bruzzone and E. Williams, editors, 2004 Summer Computer Simulation Con-
ference, pages 173–178, San Jose, CA, 2004. SCS.

3. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, second edition, 2000.

4. J.E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Z. Kohavi, editor, The Theory of Machine and Computations, pages 189–196, New
York, 1971. Academic Press.

252 Moon Ho Hwang and Feng Lin

Appendix: Proof of Theorem 1

Lemma 2. Suppose that M =< X, Y, S, ta, δx, δτ , λ, S0, SF >. Then s ∈ Sτ is
compressible if and only if ∀s−1 ∈ δ−1

τ (s), s−1 ω−→ s′ ⇔ s−1
c

ω−→ s−1
c

′ and s′ ∈
SF ⇔ s−1

c
′ ∈ SF where ω ∈ ΩX[0,ta(s−1)+ta(s)), s−1

c denotes s−1 ∈ S of Mc and
Mc is the SP-DEVS in which sx ∈ R(s) is compressed by Compression(M, sx).

Proof of Lemma 2. (If Case) Assume that for s ∈ Sτ s is compressible. Let
ω = ω1ω2 such that ω1 ∈ ΩX[0,ta(s−1)), ω2 ∈ ΩX[0,ta(s)). Then ∃(s−1

x , sx and s′)
s.t. s−1 ω1−→ s−1

x , δτ (s−1
x) = sx and sx

ω2−→ s′. By condition 2 of Definition 5,
s−1 ω1−→ s−1

x
ωε−→ sx

ω2−→ s′ where ωε = (0, ε). Since ωε is a timed nonevent so
s−1 ω1ω2−→ s′.

Let’s check the preservation of ω in the compressed model Mc. Since s
ω1−→ sx

so s−1
c

ω1−→ s−1
cx . By condition 1 of Definition 5, ∃s−1

c
′ s.t. s−1

cx
ω2−→ s−1

c
′ so we

can say that s−1
c

ω1ω2−→ s−1
c

′. By the third condition of Definition 5, it is true
that s′ ∈ SF ⇔ s−1′ ∈ SF . Moreover, in the Compression(M, s) there is no
change of s−1′ from the viewpoint of SF so we can say that s′ ∈ SF ⇔ s−1′ ∈
SF ⇔ s−1

c
′ ∈ SF . Therefore, ∀s−1 ∈ δ−1

τ (s), s−1 ω−→ s′ ⇔ s−1
c

ω−→ s−1
c

′ and
s′ ∈ SF ⇔ s−1

c
′ ∈ SF .

(Only If Case) Assume that for ∀s−1 ∈ δ−1
τ (s), s−1 ω−→ s′ ⇔ s−1

c
ω−→ s−1

c
′

and s′ ∈ SF ⇔ s−1
c

′ ∈ SF , but s is not compressible. Let’s consider ω1 ∈
ΩX[0,ta(s−1)), ω2 ∈ ΩX[0,ta(s)) s.t. PU (ω1) = PU (ω2).

First, suppose s−1 ω1−→ s−1
x but s � ω2−→ and ω = ε[0,ta(s−1))ω2. Since s � ω2−→ so

s−1 � ω−→ however s−1
c

ω−→ s−1
cx

′ because s−1 ω1−→ s−1
x

′. This contradicts to the
assumption of s−1 ω−→ s′ ⇔ s−1

c
ω−→ s−1

c
′. By contrast, assume that s−1 � ω1−→

but s
ω2−→ sx and ω = ε[0,ta(s−1))ω2. In this case, s−1 ω−→ sx but s−1

c � ω−→ so it
also contradicts to s−1 ω−→ s′ ⇔ s−1

c
ω−→ s−1

c
′.

Now check the second condition. Suppose that s−1 ω1−→ s−1
x ⇔ s

ω2−→ sx

but δτ (s−1
x) �= sx. Let ω = ω1ε[0,ta(s)) then s−1 � ω−→ but s−1

c
ω−→ s−1

cx so it
contradicts to s−1 ω−→ s′ ⇔ s−1

c
ω−→ s−1

c
′. In addition, let λ(s−1

x) �= ε then if
ω = ω1(0, λ(s−1

x))ε[0,ta(s)) then s−1 ω−→ s−1
x but s−1

c � ω−→, so it contradicts to the
assumption.

Finally, assume that s−1 ω1−→ s−1
x ⇔ s

ω2−→ sx but δτ (s−1
x) = sx and λ(s−1

x) =
ε but s−1

x ∈ SF �⇔ sx ∈ SF . In this case, for ω = ω1ε[0,ta(s)), s
−1 ω−→ s−1

x ⇔
s−1

c
ω−→ s−1

cx but s−1
x ∈ SF �⇔ s−1

cx ∈ SF so it contradicts to the assumption. �

Theorem 1. If s is compressible and Mc is achieved by Compression(M,sx)
∀sx ∈ R(s). Then L(M) = L(Mc) and Lm(M) = Lm(Mc).

Proof of Theorem 1. By Lemma 1 and Lemma 2. �

lub@archi.ssu.ac.kr

kimkj@hanseo.ac.kr

()λδδ=

→δ →×Γδ
(){ }≤≤∈=Γ

→λ
∞

+>−
∈

=
λ

δ ∈

≤ δ

Λ

∅
∅≠=∅
∅==

=Λ ωλ
ωλ

ω

()ΨΨΨΨΨΨΨ = λδ
Ψ Ψ

Ψ Ψ

Ψ{ }(ΨΨΨΨΨ ∈=

)
Ψ Ψ Ψ Ψ

Ψ ∈

Ψ

()(()){ ()((ΨΨΨΨΨ=
Ψ

)) ∈ΨΨ Ψ

}∈
Ψ Ψ Ψδ

Ψλ

Ψ

()ΨΨΨΨΨΨ = λδψ

ψ Ψ

Ψ ()[]Ψ∈ Ψ

Ψ ()[]Ψ∈ Ψ

Ψ ()[]Ψ∈ Ψδ Ψδ ()[]Ψ∈ δ
Ψλ Ψλ ()[]Ψ∈ λ

()ΨΨΨΨΨΨΨ
= λδ

{ }≤≤∈∀⋅⋅⋅= ΨΨ αααα

Ψ { }≤≤∈∀⋅⋅⋅= ΨΨ ββββ

Ψ { }≤≤∈∀⋅⋅⋅= ΨΨ γγγγ Ψ

Ψ Ψ ()ΨΨ ∈ δδ Ψ

()ΨΨ ∈ λλ Ψ

()∅=Ψ

() ()

()=

()

()⊂

()Ψ⊆ω

{ } { }()∈⋅⋅⋅== ααα

()λδ=
()({ ()))((αααα=

)() ()(()) ()(()) ∈∀⋅⋅⋅ αα

}∈∀

()λδ=

{ }≤≤∈∀⋅⋅⋅= αααα
}{ ααα ⋅⋅⋅= { ⋅⋅⋅= ββ

}≤≤∈∀ββ { ⋅⋅⋅= ββ }β

{ }≤≤∈∀⋅⋅⋅= γγγγ { ⋅⋅⋅= γγ }γ

δ λ

({ })=∈
{(}==

{)∈

()(() ())λδ∈∈∈=

() ()() (({)=
()) ()(()) (() ()) ∀

}∈∀∈
(λδ= { ∈∀⋅⋅⋅= αααα

} {β= }∈∀⋅⋅⋅ βββ { ∈∀⋅⋅⋅= γγγγ
} δδ ∈ λλ ∈

Does Rational Decision Making
Always Lead to High Social Welfare?

Dynamic Modeling of Rough Reasoning

Naoki Konno and Kyoichi Kijima

Graduate School of Decision Science and Technology, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan

{nkonno,kijima}@valdes.titech.ac.jp

Abstract. The purpose of this paper is two-fold: The first is to propose
a dynamic model for describing rough reasoning decision making. The
second is to show that involvement of some irrational decision makers in
society may lead to high social welfare by analyzing the centipede game
in the framework of the model. In perfect information games, though it is
theoretically able to calculate reasonable equilibria precisely by backward
induction, it is practically difficult to realize them. In order to capture
such features, we first develop a dynamic model assuming explicitly that
the players may make mistakes due to rough reasoning. Next, we will
apply it to the centipede game. Our findings include there is a case
that neither random nor completely rational, moderate rational society
maximize the frequency of cooperative behaviors. This result suggests
that society involving some rough reasoning decision-makers may lead to
socially more desirable welfare, compared to completely rational society.

1 Introduction

This paper investigates influences of rough reasoning by developing a dynamic
decision making models. We then apply it to the centipede game. For illustrating
discrepancy between equilibrium obtained by backward induction and actual
experimental results. Finally, we examine possibility that society involving some
rough reasoning decision-makers may lead to socially more desirable welfare,
compared to completely rational society where all players reason completely.

In the traditional game theory, it is usually assumed that players completely
recognize the game situation so as to compare all the results without error and
to choose rational strategies. However, as Selten pointed out by using chain store
paradox, even subgame perfect Nash equilibrium may lead to strange outcomes.
In perfect information games, though it is theoretically able to calculate reason-
able equilibria by backward induction, it is practically difficult to realize them
due to various complexity and the limitation of abilities.

For the static decision situations, Myerson proposed a concept of trembling
hand equilibrium. He assumed that players try to take best response, while
errors are inevitable. He also argued that according to the difference of payoff,

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 262–269, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Does Rational Decision Making Always Lead to High Social Welfare? 263

the player takes worse strategies with positive probability. Mckelvey and Palfrey
proposed substitute quantal response for best response in the sense that the
players are more likely to choose better strategies than worse strategies but do
not play a best response with probability 1. He developed the quantal response
functions by using logit functions.

On the other hand, as far as dynamic decision situations are concerned,
Mckelvey and Palfrey transformed extensive form games into normal form games,
and examined quantal response equilibria.

We characterize player’s rough reasoning by following two elements. One is
the payoff, while the other is the depth of situations. First, along with Mckelvey
and Palfrey, we assume reasoning accuracy depends on the difference of the
payoffs in such a way that error rate is a decreasing function of the difference
of payoffs. Second, as the depth of decision tree is increased, reasoning accuracy
tends to decrease. This property describes that it is difficult to compare actions
in the far future.

Centipede game is known for the discrepancy between equilibrium obtained
by backward induction and that by actual experimental results. Due to Mckelvey
and Palfrey, the subgame perfect Nash equilibrium strategies are observed only
less than 30%. They tried to rationalize the result by mathematical model in
which some of the players have altruistic preferences. Aumann insisted that
incompleteness of common knowledge causes cooperative behaviors. Although
these factors may work for the centipede game, we claim rough reasoning is also
an essential factor leading to cooperative behaviors.

In order to reveal properties of rough reasoning, we propose two specific
models; rough reasoning model based on logit function and rough reasoning
model based on exponential error. Then we derive common properties from the
two by numerical simulations.

This article is organized as follows. Section 2 presents a general rough reason-
ing model. In Section 3, we propose two specific reasoning models and apply them
to the centipede game. We examine influences of irrationality on the centipede
game by numerical simulations in Section 4. Finally conclusions and remarks are
given in Section 5.

2 General Rough Reasoning Model

In the traditional game theory, it is usually assumed that all players perceive
situation precisely, and essentially compare all the strategies without error. How-
ever, perfect reasoning is quite difficult in most actual decision situations due to
the players’ reasoning abilities. We first define true game.

Definition 1. True game is a finite perfect information extensive form game
given by

G = (I, N, A, α, (Ni)I , (ri))

where I is the set of players, while N is the set of nodes. NT and ND are
partitions of N , where NT is the set of terminal nodes and ND is the set of

264 Naoki Konno and Kyoichi Kijima

Fig. 1. General reasoning rule.

decision nodes. A is the set of actions α: N − {n1} → ND is the function from
nodes except initial node n1 to the prior nodes. P : ND → I is the player function
that determines the player who chooses an action at the node. (ri): NT → RI is
the payoff function that determines the payoffs of each agent.

Since G is a perfect information game, subgame perfect equilibria are obtained
by backward induction. However, since the players can not compare all the result
without error in the actual situations, we assume that players choose actions by
the following heuristics. To implement it, we need some notations:

N2: The set of attainable nodes from n1 i.e.
N2 = {n|n ∈ N , α(n) = n1}.

N1
m: The set of the last decision nodes of G. i.e.

N1
m = {n|n ∈ ND, ∃nt ∈ NT , s.t. α(nt) = n, and ¬(∃nd ∈ ND, s.t.

α(nd) = n)}.
n∗: A Best node at n ∈ ND for P (n). i.e. n∗ ∈ argmaxn′{rP (n)(n′)|α(n′) = n}

Denote by r(nd) = (r1(nd), ..., rj(nd), ..., rI(nd)) a payoff vector that the player
reasons to achieve if the optimal choices are taken at every stage after nd ∈
Nd − {n1}. Then the heuristics are as follows. (Refer to Fig.1).

1. Let i1 be the player that chooses an action at the initial node n1. i1 tries to
reason the estimated payoff vector at n2 ∈ N2 by backward induction.

2. Indeed, i1 tries to reason estimated payoff vector at node nm ∈ N1
m. Let a be

the depth form the initial node to nm. Let b(n′
m) be the difference between

rP (nm)(nm∗) and rP (nm)(n′
m). i.e. b(n′

m) = rP (nm)(nm∗)−rP (nm)(n′
m), where

n′
m ∈ {n|α(n) = nm}.

3. i1 assigns r(nm∗) to estimated payoff vector r(nm), while it may occurs an
error with a certain probability. We assume that the error probability is an
increasing function of a and a decreasing function of b. If there are some best
responses, each best action is taken with same probabilitiy.

4. When the above operations have been finished for every nm ∈ N1
m, i1 iden-

tifies every nm ∈ N1
m with terminal nodes. Then i1 generates N2

m as a set of

Does Rational Decision Making Always Lead to High Social Welfare? 265

last decision nodes of a new truncated game. Start to reason next reasoning
process. This process is iterated until n2. By this process, i1 generates a
payoff vector at n2.

5. Finally, i1 compares the payoff vector of n2 ∈ N2 and chooses a best action.
(This heuristics is an kind of backward induction with errors.)

6. Let i2 be a next player after i1. Then i2 reasons independently of reasoning
of i1 and chooses a best action for i2.

7. The players implement these processes until they reach a terminal node.

This process produces probability distribution over NT . If an player chooses
actions more than once in the decision tree, reasoning at the subsequent nodes
may contradict to that at the prior node. Our model can describe such situations.

3 Two Specific Models
and Their Applications to the Centipede Game

To examine systematic deviation from Nash equilibrium, we focus on the Rosen-
thal’s centipede game by using more specific models. Centipede game is well
known as an example illustrating differences between results by backward in-
duction and those by actual experiments.

The centipede game is two person finite perfect information game. We call
player 1 is “she”, and player 2 is “he”. Each player alternately chooses Pass(P)
or Take(T) in each decision node. If she chooses action P , her payoff decreases
while his payoff increases by more than his decrease. If she chooses action T ,
the game is over and they receive payoffs at that node. Symmetrically if he
chooses action P , his payoff decreases while her payoff increases by more than
his decreases. If the game has n decision nodes, we call the n−move centipede
game.

The pair of strategies that both the players choose T at every decision node
is only subgame perfect equilibrium because the centipede game is finite. This
equilibrium leads to the result that the game is over at the first period.

The centipede game has many variants about payoff structures. However we
adopt the original Rosenthal’s structure, where if she chooses P , her payoff is
reduced by 1 and his payoff is increased by 3.

Now, we propose two specific models, rough reasoning model based on logit
function and rough reasoning model based on exponential error model.

3.1 Rough Reasoning Model Based on Logit Function

Suppose that player i at node nk reasons about the decision node nl. First, we
need the following notations:

j: The decision player at node nl.
Ns: A set of attainable nodes from nl. i.e. Ns = {n|n ∈ N, α(n) = nl}.
σ: A reasoning ability parameter.

266 Naoki Konno and Kyoichi Kijima

Fig. 2. three − move centipede game.

We should notice that σ works as a fitting parameter with respect to the unit.
For example, if description about payoffs change from dollar to cent, σ will be
1

100 . Furthermore, if unit is fixed, as the rationality of agent is increased, σ will
be increased.

Suppose that nsx ∈ Ns, the rough reasoning model based on logit function
with parameter σ, as follows:

Definition 2. Rough reasoning model based on logit function is a reasoning
model that assigns r(ns1) to r(nl) with probability

e
rj(ns1)

a σ

Σns∈Nse
rj(ns)

a σ

The probability essentially depends on the ratio of payoff against a in such a
way that if a is sufficiently large, then the choice can be identical with random
choice. If a is sufficiently small and b is sufficiently large, the choice can be seem
as by the best response.

3.2 Rough Reasoning Model Based on Exponential Error

Suppose that player i at node nk reasons about the decision node nl. We need
the following notations.

Ns∗: The set of ns∗. i.e. Ns∗ = argmaxn′{rP (ns)(n′)|α(n′) = ns}
b(ns): b(ns) = rj(ns∗)− rj(ns) for ns ∈ Ns and ns /∈ Ns∗.

k: k = |Ns|.
c: c = |Ns ∗ |.
ε: a reasoning ability parameter.

We should notice that ε works as a fitting parameter with respect to the unit.
Furthermore, if the unit is fixed, as the rationality of agent is increased, ε will
be decreased.

We propose rough reasoning model based on exponential error with param-
eter ε, as follows:

Does Rational Decision Making Always Lead to High Social Welfare? 267

Fig. 3. Two specific reasoning rules.

Definition 3. Rough reasoning model based on exponential error is a reasoning
model that assigns r(ns1) to r(nl) with probability⎧⎪⎨⎪⎩

min{ 1
k
, e

−b(ns1)
a ε}, if ns1 /∈ Ns∗

1−Σns1 /∈Ns∗min{ 1
k , e

−b(ns1)
a ε}

c
, ifns1 ∈ Ns∗

The definition explicitly represents probability with which non-optimal node
is mis-estimate as optimal by backward induction.

It should be notice that in the both models the probability that non-optimal
node is mis-estimated as optimal is an increases function of a and decreasing
function of b.

4 Simulation Results and Their Implications

In order to examine frequency of noncooperative behavior T with relation with
FCTF, we calculated several simulations, where FCTF denotes frequencies of
choice T at first period. We focus on the choice at the first period, because if
P is chosen at the first period, the remained subgame can be considered as the
(n− 1)−move centipede game. Figures 4 and 5 show the simulation results of
FCTF on the both models respectively.

Note that in the Figure 4, larger σ means more rationality, while in Figure 5,
smaller ε implies more rationality.

First, we investigate relation between FCTF and the reasoning ability. For
every n in the both models, it is observed that there is a turning point. Until
the turning point, as the rationality is increased, noncooperative behavior T
tends to decrease. However if reasoning ability exceeds the turning point, as the
rationality is increased, noncooperative behavior T tends to increase.

Figures 4 and 5 give the following two implications about the relation be-
tween FCTF and the reasoning ability: Moderate rationality tends to bring more

268 Naoki Konno and Kyoichi Kijima

Fig. 4. FCTF logit function model.

Fig. 5. FCTF exponential error function model.

irrational behaviors than random choice since P is interpreted as an irrational
action. On the other hand, even if players are not completely rational, their
rough reasoning may leads to socially more desirable outcomes than those of
completely rational reasoning, since low frequency of FCTF implies high social
welfare.

We next examine the relation between FCTF and the value of n. As n in-
creases, FCTF tends to decrease. Furthermore, the turning point shifts to the
direction of higher rationality.

Centipede game can be considered as a kind of situation that cooperation is
desired. Since cooperative behavior is not always increase their payoffs, Pareto
efficiency is not guaranteed. To implement Pareto optimal results with certainly,
we need to introduce a certain penalty system. However, since introduction of

Does Rational Decision Making Always Lead to High Social Welfare? 269

such a penalty system inevitably requires social cost, it does not always increase
social welfare in the real world. In addition, repetition of cooperative actions may
generate a kind of moral so that the players may perceives the centipede game
as if it were a game which the cooperative actions are equilibrium strategies.

These arguments indicates severe penalty system may not required to imple-
ment cooperative strategies in the real stituations.

5 Conclusions and Further Remarks

The main contributions of this paper are as follows: First, we proposed a dynamic
mathematical models expressing rough reasoning. Reasoning ability is defined
as dependent not only on the payoff but also on the depth of decision tree.
Second, new interpretation of our intuition in centipede game was proposed.
Third, we pointed out the effects of rough reasoning on social welfare from two
sides, reasoning ability and scale of the problem.

In this paper, we only discussed cases where each of players is equally ra-
tional. It was shown that the increase of agent’s rationality is not necessarily
connected with the rise of social welfare. It is future task to analyze what strat-
egy is stabilized from an evolutional viewpoint by assuming a social situation is
repeated.

References

1. R., Aumann: Correlated Equilbrium as an Expression of Beysian Rationality. Econo-
metrica 55 (1992) 1-18.

2. R., Aumann: On the Centipede game: Note. Games and Economic Behavior 23
(1998) 97-105.

3. R., Myerson: Refinements of the Nash Equilibrium Concept. Int. Journal of Game
Theory 7 (1978) 73-80.

4. R., Mckelvey, T., Palfrey: An Experimental Study of the Centipede Game. Econo-
metrica 60 (1992) 803-836.

5. R., Mckelvey, T., Palfrey: Quantal Response Equilibria in Normal Form Games.
Games and Economic Behavior 7 (1995) 6-38.

6. R., Mckelvey, T., Palfrey: Quantal Response Equilibria in Extensive Form Games.
Experimental Economics 1 (1998) 9-41.

7. R., Rosenthal: Games of Perfect Information, Predatory Pricing and the Chain-Store
Paradox. Journal of Economic Theory 25 (1981) 92-100.

8. R,. Selten: The Chain-Store Paradox. Theory and Decision 9 (1978) 127-159.

sumit.ghosh@ieee.org, sghosh2@stevens.edu

Timed I/O Test Sequences
for Discrete Event Model Verification

Ki Jung Hong and Tag Gon Kim

Dept. of EECS,
Korea Advanced Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea

kjhong@smslab.kaist.ac.kr, tkim@ee.kaist.ac.kr

Abstract. Model verification examines the correctness of a model im-
plementation with respect to a model specification. While being de-
scribed from model specification, implementation prepares to execute
or evaluate a simulation model by a computer program. Viewing model
verification as a program test this paper proposes a method for gener-
ation of test sequences that completely covers all possible behavior in
specification at an I/O level. Timed State Reachability Graph (TSRG)
is proposed as a means of model specification. Graph theoretical analysis
of TSRG has generated a test set of timed I/O event sequences, which
guarantees 100% test coverage of an implementation under test.

1 Introduction

Model verification examines the correctness of a model implementation with
respect to a model specification. As discrete event simulation models are getting
more and more complicated verification of such models is extremely complex.
Thus, automatic verification of such a simulation model is highly desirable [1].

Since a model specification is implemented in a simulation program model
verification can be viewed as a program test. Thus, model verification starts
from generation of input/output sequences for an implementation, which covers
all possible behaviors of a specified model. Untimed discrete event model can be
specified by finite state machine (FSM). FSM can be verified by conformance
test [5]. Test sequences of conformance test can be built by the UIO method
[3, 4], and others. Test sequences generation of timed discrete event models can
be obtained by timed Wp-method [6], which is based on timed automata and
region automata.

This paper proposes a new approach to select test cases for a module-based
testing of a discrete event simulation program at an I/O level. We assume that
specification of each module is known and an implementation is unknown as a
black box. Time State Rechability Graph (TSRG) is proposed to specify mod-
ules of a discrete event model. TSRG represents a discrete event model in terms
of nodes and edges. Each node represents a state of discrete event model asso-
ciated with which is a time interval. On the other hand, each edge represents
transition between nodes with input, output or null event in the specified time

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 275–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

276 Ki Jung Hong and Tag Gon Kim

interval. Graph theoretical analysis of TSRG generates all possible timed I/O
sequences from which a test set of timed I/O sequences with 100 % coverage can
be constructed.

An obstacle of the test method lies in different numbers of states between
specification and implementation. This is because we assume that an exact num-
ber of states in implementation is unknown. However, an assumption on a max-
imum number of states used in an implementation can overcome the obstacle.
Note that the number does not need to be exact. Instead, it may be any num-
ber that is greater than or equal to one used in implementation, which only
determines complexity of testing. This paper is organized as follows. Section 2
proposes TSRG. Section 3 introduces TSRG related definitions and theorems,
and proposes the generation method of test input/output sequences. Finally,
conclusions are made in section 5.

2 Timed State Reachability Graph

Timed State Reachability Graph (TSRG) is a modeling means which speci-
fies a discrete event system in timed input/output behavior. Nodes represent
time constraints states; edges represent conditions for transitions between nodes.
The graph starts from an initial state of a discrete event model and generates
edges/nodes which are reachable from the state. The formal semantics of TSRG
is given below:

TSRG=〈N, E, θN , θE〉
N : States set : Node
E : N ×N : Edge

θN : N → �+
(0,∞) ×�+

(0,∞)

: Node attribute function
θE : E → (X ∪ Y ∪ {τ})×Boolean

: Edge attribute function
X : Input events set
Y : Output events set
τ : null output event

Boolean∈{true, false} : CONTINUE or NOT

TSRG has two types of an edge: input transition edge and output transi-
tion edge. While one or none output transition edge can be attached at a node,
one or more input transition edges can be attached at the same node. An at-
tribute associated with a node is interpreted as a waiting time for the state to
be transit. An edge attribute include a Boolean of CONTINUE. Meaning of
CONTINUE is that (1) an input transition occurs at a state before a deadline
of a maximum elapsed time defined at the state, and (2) a new state continues
keeping the deadline defined at the previous state.

Timed I/O Test Sequences for Discrete Event Model Verification 277

A

C

!c

time0

?a@continue !c

(a)

(b)

5

time0

?b !c

6

2

2

(a)
(b)

Fig. 1. Event time diagram of continue example.

Let us explain CONTINUE in more detail using an example shown in Fig
1. In the Fig, there are two paths from state A to state C. The first path is

A
?a@[0,5],continue−−−−−−−−−−−−−−→ C, and the second one is A

?b@[0,5]−−−−−−→ C. A waiting time
of state A is the same value 5 for both paths, but a waiting time of state C is
different for each path, because of continue in the first path. If ε is an elapsed
time for an arrival event ?a of state A, a waiting time of state C for the first
path is 5-ε, 0 < ε ≤ 5, and a waiting time of state C for the second path is
4. Briefly, CONTINUE means that the waiting timer is continued from the
previous state, without resetting for the next state. Due to such timer semantics
of CONTINUE, a pair of nodes connected by an edge with CONTINUE
should have a finite waiting time and an output edge.

3 Theorem and Definition: TSRG

The following equivalent node’s definition in TSRG is prerequisite to define the
minimization of TSRG.

Definition 1 (Equivalent node). Let s1, s2 ∈ N be nodes. Node s1 and s2

are equivalent, i.e., s1 ≡ s2, when the following condition is satisfied: θN (s1) =
θN (s2) ∧ (∀e1 = (s1, ś1) ∈ E, ∃e2 = (s2, ś2) ∈ E, θE(e1) = θE(e2) ∧ ś1 ≡ ś2) ∧
(∀e2 = (s2, ś2) ∈ E, ∃e1 = (s1, ś1) ∈ E, θE(e1) = θE(e2) ∧ ś1 ≡ ś2).

Definition 2 (Minimization of TSRG). TSRG is minimized if and only if
there is no equivalent relation for any two nodes in the node set.

Figure 2 shows an example of equivalent nodes. Timed input/output (TIO)
event trace of model (a) is repetitive sequences of ?a@[0,tA]·!b@[tB,tB]·?c@[0,tC],

which is extracted from a state trace with a TIO event A
?a@[0,tA]−−−−−−−→B

!b@[tB ,tB]−−−−−−−→C
?c@[0,tC]−−−−−−→A. The TIO event trace ofmodel (b) is repetitive sequences of ?a@[0,tA]·
!b@[tB, tB]· ?c@[0, tC], extracted from A

?a@[0,tA]−−−−−−−→B
!b@[tB ,tB]−−−−−−−→C

?c@[0,tC]−−−−−−→D
?a@[0,tA]−−−−−−−→B. Thus, model (a) and (b) in figure 2 have the same TIO event trace.

278 Ki Jung Hong and Tag Gon Kim

Fig. 2. Equivalent states.

While model (a) is minimized, model (b) has equivalent nodes, A ≡ D. In addi-
tion, the number of nodes of each model is different.

Test sequences for TSRG visit all edges in a TSRG model through a path
from a start node to an end node. Such a path is defined as:

Definition 3 (Path). Let i, n ∈ Z be integers with i < n, si ∈ N be a node, ei ∈
E be an edge with ei = (si, , , si+1), and ti = θN (si) be a node attribute function.
A path P from s0 to sn expressed as P (s0, sn) = (e0, t0)(e1, t1) · · · (en−1, tn−1),
which is the sequence of all pairs of a visited edge ei and its waiting time ti from
the start node to the end node.

Each small paths can concatenate to the big one. Path concatenation operator
is defined formally to describe such concatenation behavior.

Definition 4 (Path concatenation operator). Let si, sj , sk ∈ N be nodes
and P (si, sj), P (sj , sk) be paths. Path concatenation operator • is defined as
P (si, sj) • P (sj , sk) = P (si, sk) with the following properties.

P (sj , sk) • P (si, sj) = φ

P (si, sj) • φ = P (si, sj)
φ • P (si, sj) = P (si, sj)

For full coverage of states and transitions in model verification all states
and edges in TSRG should be reachable, or strongly connected, defined in the
following.

Definition 5 (Reachable). TSRG is reachable if and only if there exists one
or more path between any two nodes in TSRG.

If TSRG is reachable, it is possible to visit all edges and nodes to verify
TSRG. Otherwise, TSRG is not verifiable. The visit of all nodes can be covered
through the visit of all edges in reachable TSRG. Thus, a loop is introduced for
the visit of all edge in reachable TSRG. If TSRG is a strongly connected graph,
there exist one or more loop paths which can visit any edge and node in the

Timed I/O Test Sequences for Discrete Event Model Verification 279

graph. There exists a set of loop paths which can visit all edges and nodes in
the graph. If there exists an intersection between two loops an adjacency set to
be defined contains the intersection relation between loops. A traversal from an
initial state to any other state can be contained by some interconnected loops.
Interconnected loops can be bound by an adjacent loop chain.

Theorem 1 (Loop). Let TSRG be reachable. Any node in TSRG can be tra-
versed by one or more loop paths.

Proof. ∀si, sj ∈ N, ∃P (si, sj) and P (sj , si) s.t. P (si, si) = P (si, sj) • P (sj , si)

Definition 6 (Loop set). In a reachable TSRG, a loop set is a collections of
loops which cover all edges in TSRG.

All edges of TSRG is covered from the definition of a loop set. If a test target
has an equivalent node, visiting routes of all possible edges are made from the
loop set of TSRG by the following loop joining concatenation.

Definition 7 (Adjacency set). Any two loops in a loop set L has adjacent
relation if and only if these loops visit the same node. An adjacent relation set,
called an adjacency set, has the condition: Madj ⊆ L× L.

Definition 8 (Loop joining concatenation operator). Let L be a loop set,
Madj be an adjacency set, p1, p2 be paths in TSRG, s1, s2, si be in N , si be the
first met adjacent node, and l1, l2 ∈ L be loop paths. Then, the following operators
are hold.

l1 • φ=l1, φ is identity
φ • l1=l1

l1 • l2=φ, if (l1, l2) /∈Madj

l1 • l2=l3, if (l1, l2) ∈ Madj

l1=p1(s1, si) • p1(si, s1)
l2=p2(s2, si) • p2(si, s2)
l3=p1(s1, si) • p2(si, s2) • p2(s2, si) • p1(si, s1)

Definition 9 (Loop set joining concatenation operator). Let L0, L1 be
loop sets.

L1

⊗
L2 = {l0 • l1|∀l0 ∈ L0, ∀l1 ∈ L1}

Definition 10 (All possible I/O sequences). Let TSRG be reachable and
L be all possible loop sets of TSRG. All possible input/output sequences, Ω(h),
is Ω(h) =

⊗h
i=0 L.

The function Ω(h) of all possible I/O sequences is to explore all possible state
trajectories from an initial state through a loop set under adjacency relation. h
in Ω(h) represents a depth of adjacency tree exploration. Figure 3 shows an
example of adjacency tree exploration. In figure 3, since loops ’A’ and ’B’ have

280 Ki Jung Hong and Tag Gon Kim

A1 0 2 3

!A ?B !C

B C

A B

start from initial state

A B A B C

B C

Fig. 3. Adjacency tree exploration.

an initial state at their paths, they only can be selected at the first time when the
tree is just explored. After selection of all such loops, next loops may be selected
only by the adjacency relation until finding synchronized event sequences.

In the view of test sequences, all possible sequences Ω(h) can cover all nodes
and edges with time intervals. However, Ω(h) has very high complexity both in
time and in space. This is because the size of all possible loop set of TSRG is in-
creased at an exponential rate by the number of edges. To reduce the complexity
of Ω(h), a basic loop set is introduced as the following definition.

Definition 11 (Path inclusion). Let A, B be paths in TSRG. The path A
includes the path B, i.e. A ⊇ B, if and only if the path A visits all edges in the
path B.

Definition 12 (Loop independency). Let L be a loop set and li ∈ L. The
loop set L is independent if only if there is no li ∈ {l1, l2, · · · , ln}, such that li ⊆
•n

k=1,k 	=ilk.

Definition 13 (Basic loop set). Let L be a loop set. L is a basic loop set if
and only if a loop set l1 ∈ L has an independent path for other loop paths in the
loop set, i.e., the remaining loop paths without any selected loop path l1 can not
cover all nodes and edges in TSRG.

A basic loop set passes through all edges in TSRG. However, since a basic loop
set is a subset of a loop set its size is less than that of a loop set. It implies that
redundancy of visiting edges is reduced by using loops in a basic loop set. Since
a previous edge with CONTINUE affects time scheduling of a current edge, a
minimal independent loop set to visit all edge can not verify time scheduling of
all nodes. To solve this, a TSRG model with CONTINUE is modified by the
following rules. If TSRG has one or more edges with CONTINUE, all edges
with CONTINUE are merged into a newly inserted equivalent node, and they

Timed I/O Test Sequences for Discrete Event Model Verification 281

D

A

?a@continue

B

282 Ki Jung Hong and Tag Gon Kim

Definition 15 (Mergeable node). Assume that a node s0 with waiting time
T (s0) connected to edges with transition rules. Then, the node s0 is merge-
able if and only if there exists a node si in TSRG with the following condi-
tions : ∀e1 = (s0, s1), e2 = (si, sj) ∈ E, si �= s0 ∧ θN(s0) = θN (si) ∧ θN (s1) =
θN (sj)∧((θE(e1), θE(e2) ∈ ((Y ∪{τ})×boolean)∧θE(e1) = θE(e2))∨((x1,⊥) =
θE(e1), (x2,⊥) = θE(e2) ∈ (X × boolean) ∧ (x1 �= x2 ∨ s1 ≡ sj))).

To cover mergeable nodes, the following defines the concept of a unique timed
I/O (UTIO) which is similar to UIO and UIOv [3].

Definition 16 (UTIO). An UTIO sequence which discriminates a node s0

from the other one is an input or time-out sequence, x0. The output sequence
produced in response to x0 from any node other than s0 is different from that
responded from s0. That is, for yi, y0 ∈ Y, eij = (si, sj), e01 = (s0, s1) ∈ E,
(yi, false) = θE(eij), (y0, false) = θE(e01), ∀si ∈ N ∧ si �= s0, θN (si) �=
θN (s0) ∨ yi �= y0 ∨ θN (sj) �= θN (s1). And, an ending point of the UTIO se-
quence at node s0 is s0, which means UTIO sequence at node s0 is a loop path.

4 Simple Example: Verification of Buffer

The UTIO sequence of a mergeable node should be a loop path, which can be
easily attached to basic loop paths. Consider an example of a buffer model of
length 2 in figure 5. As shwon in the figure state space of the buffer is two di-
mensional: processing status and queue length. Processing status, either in Busy
or Free, is a status of a processor cascaded to the buffer. Queue length is a
maximum size of the buffer. Let us find mergeable nodes and UTIO sequences.
Mergeable nodes S4, S6, UTIO sequences of nodes S4 and S6 are shown in ta-
ble 1. Two UTIO sequences are attached into the basic loop set of figure 5. The
attached basic loop set is shown in table 1. The four basic loop paths can visit
all nodes and edges of the buffer model shown in figure 5. Let us further consider
another example of a buffer model of length 2 with equivalent nodes. Figure 6
shows two such models: (a) one with three equivalent states and (b) the other

Queue

length

Processing

status

Busy

Free

0 1 2

?in

?done

?in

!out

?done

?in

?done

?in@continue

!out

Fig. 5. TSRG of buffer model of length 2.

Timed I/O Test Sequences for Discrete Event Model Verification 283

Table 1. Basic loop paths for buffer of length 2.

UTIO Node UTIO Seq.

S4 !out@[3, 3]·?done@[0,∞]·?in@[0, 3]

S6 !out@[3, 3]·?done@[0,∞]·?in@[0, 3]

No. Loop paths Nodes UTIO Nodes

l1 S2 →?in@[0, 3]·!out@[3, 3]·?done@[0,∞] S2, S4, S1 NA

l2
S4 → !out@[0, 3]· ?in@[0,∞]· ?done@[0,∞]·

S4, S1, S3 S4!out@[3, 3]·?done@[0,∞]·?in@[0, 3]

S4 →?in@[0, 3], C·
l3

!out@[3, 3]·?done@[0,∞]·?in@[0, 3]·
S4, S6, S3 S6, S4!out@[3, 3]·?done@[0,∞]·

!out@[3, 3]·?done@[0,∞]·?in@[0, 3]

l4
S6 →!out@[3, 3]· ?in@[0,∞]· ?done@[0,∞]·

S6, S3, S5 S6!out@[3, 3]·?done@[0,∞]·?in@[0, 3]

with three equivalent nodes and one transition fault in S′
1 → S5. The variable h

of Γ (h) is assigned to 1. Test sequences set, generated from Γ (1) of figure 5, is
{l1 • l1, l1 • l2, l1 • l3, l2 • l1, l2 • l2, l2 • l3, l3 • l1, l3 • l2, l3 • l3, l3 • l4, l4 • l2,
l4 • l3, l4 • l4}. The test sequence l3 • l2 detects the difference between (a) and
(b) of figure 6. The test sequence l3 • l2 visits the nodes in figure 6(a) through
the following order: S4 → S′

1 → S3 → S4 → S6 → S3 → S4. However, for figure
6(b), the order of node visits of l3 • l2 is S4 → S′

1 → S5 → S6 → S3 → S4.
Consequently, the UTIO sequence of S4 detects transition fault of figure 6(b).

?in

?done

?in

!out

?done

?in

?done

?in@continue

!out

!out

?in@continue

?in?done?in

?in

?done

?in

!out

?done

?in

?done

?in@continue

!out

!out

?in@continue

?in?done?in

(a) Equivalent states : S 1, S 2, S 4
(b) Equivalent states: S 1, S 2, S 4

and fault transition : S 1 � S5

Fig. 6. Buffer model of length 2 with equivalent states.

5 Conclusion

This paper introduced a method for verification of a discrete event model using
a test set of timed I/O event sequences. TSRG was employed as a means of mod-
eling of discrete event systems; an implementation of TSRG was assumed to be a

284 Ki Jung Hong and Tag Gon Kim

black box with a maximum number of states known. A graph-theoretical analysis
of TSRG showed all possible timed I/O sequences Ω(h) which covers all edges
and nodes of TSRG. However, due to some redundancy in visiting nodes/edges
of TSRG complexity of Ω(h) is too high to apply practical verification prob-
lems. To solve the problem a basic loop set of TSRG was introduced based on
which a minimal test set Γ (h) of timed I/O event sequences was extracted. Intro-
duction of predefined UTIOs attached to basic loop paths for mergeable nodes
guaranteed that a test coverage of discrete event models using Γ (h) was 100 %.

References

1. J. Banks, D. Gerstein, and S. P. Searles, “Modeling process, validation, and verifi-
cation of complex simulations: A survey”, S.C.S Methodology and Validation, sim-
ulation series, Vol. 19, No. 1, pp 13-18, 1988.

2. Concepcion, and B. P. Zeigler, “DEVS formalism: a framework for hierarchical
model development,” IEEE Trans. Software Eng., vol. 14, no. 2, pp. 228-241, Feb.
1988.

3. W. Y. L. Chan, C. T. Vuong, M. R. Otp, “An improved protocol test generation
procedure based on UIOS,” ACM SIGCOMM Comp. Commun. Review,Symposium
proc. communi. arch. & protocols , vol. 19, pp. 283-294, Aug. 1989.

4. A. T. Dahbura, K. K. Sabnani, and M. Ümit Uyar, “Formal nethods for generating
protocol conformance test sequences,” Proc. of the IEEE, vol. 78, pp. 1317-1325,
Aug. 1990.

5. D. Lee, and M. Yannakakis, “Principles and methods of testing finite state machines-
A survey,” Proc of the IEEE, vol. 84, pp. 1090-1123, Aug. 1996.

6. A. En-Nouaary, R. Dssouli, and F. Khendek, “Timed Wp-method: Testing real-time
systems,” IEEE Trans. Software Eng., vol. 28, pp. 1023-1038, Nov. 2002.

7. K. J. Hong, and T. G. Kim, “A Verification Of Time Constrained Simulation Model
Using Test Selection:A New Approach”, In preparation, 2004.

lbh_nudt@sina.com

A detailed description can be found in

δ δ λ=< >

δ
δ

λ
+

∞

→
× →

= ∈ ≤ ≤
→

→

=< >

∀ ∈
∀ ∈ ∪ ⊆ ∪ ∉

∀ ∈ �

→ =
→ =
→ ≠ ≠

χχ=< >

χ
χ χ

χ

χ χ χ χ χ χ χ χγ δ λ τ=< Σ >

χ

Σ
χγ → Σ

χ χ∈ Σ ∈Σ

χγΣ = =< >

γ=< >

γ
γ∈

δ δ λ=< >

γ→ ∈ ⊂ ⊂

γ =
γ = = ∅

γ =
γ ≠

γ=< >

=< >

=< >

= ∪

= ∪

γ γ γ∈ ∈ ∈
= ∪ = ∪ = ×

∈ = ∈ ∪ ≠ ∅

γ

γ

∈

∈

= ∪ = ∨ =

= ∪ ∪ ≠ ∧ ≠

γ
γ

∈
→ ∪

= →

γ=< >

=< >

=< >

χκ χ=< >

κ
⊂

κ∈
γ=< >

χ
χ χ

χ χ χ χ χ ϕ χ χ χπ ψ δ λ τ=< >

χ χ χ χ

χ χ χ χ
γ

κ
ψ

∈
= × − ∅

χ χ χ χπ ψ π ϕ ψ× → = ∈

ϕ ϕ ϕ ϕ ϕ ϕ=< >
ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

χδ χ

χλ χ

χτ χ
ϕ

δ λ=< >
=<

>

χ

=< >

κ γ∀ ∈ =
κ=< >

=< >

=< >

δ δ λ=< >

χ χ χ χ ϕ

ϕ = = κ=
κ=< >

κ= = = = = = = =

χκ χ=< >
κ= = ∅ =

γ= γ =

χ χ χ χ χ φ χ χ χπ δ λ τ=< Ψ >

χ

χ χϕ π= =

ϕ ϕ ϕ ϕ ϕ ϕ=< >

ϕ

ϕ ϕ ϕ

ϕ χ

χ
=< >

= = =

=

ϕ ϕ= ∅ ∈ = ∅ ∈

ϕ χ ϕ× → → ϕ χ χ× →

χ ϕ χ= χ χ χδ= χϕ π= =

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

ϕ ϕ ϕ ϕ χχ

=< >

=< >

= = = =

ϕ ϕ= = → →

{com97,artjian}@gce.sejong.ac.kr, {shindk,dshin}@sejong.ac.kr

{hjpark,chlee}@konkuk.ac.kr

•

•

•

•

−

=
−

=
−

=
−

•

=− − − −

•

=
−

=− − −

•

• −

•

•

•

−

+←

<=
+←

==
+←

Mapping Cooperating GRID Applications
by Affinity for Resource Characteristics

Ki-Hyung Kim and Sang-Ryoul Han

Dept. of Computer Eng. Yeungnam University,
214-1 Daedong, Gyungsan, Gyungbuk, Korea

kkim@yu.ac.kr, srman@yumail.ac.kr
http://nclab.yu.ac.kr

Abstract. The Computational Grid, distributed and heterogeneous col-
lections of computers in the Internet, has been considered a promising
platform for the deployment of various high-performance computing ap-
plications. One of the crucial issues in the Grid is how to discover, select
and map possible Grid resources in the Internet for meeting given appli-
cations. The general problem of statically mapping tasks to nodes has
been shown to be NP-complete. In this paper, we propose a mapping
algorithm for cooperating Grid applications by the affinity for the re-
sources, named as MACA. The proposed algorithm utilizes the general
affinity of Grid applications for certain resource characteristics such as
CPU speeds, network bandwidth, and input/output handling capabil-
ity. To show the effectiveness of the proposed mapping algorithm, we
compare the performance of the algorithm with some previous mapping
algorithms by simulation. The simulation results show that the algorithm
could effectively utilize the affinity of Grid applications and shows good
performance.

1 Introduction

Advances in high-speed network technology have made it increasingly feasible to
execute even communication-intensive applications on distributed computation
and storage resources. Especially the emergence of computational GRID envi-
ronments [1, 2] has caused much excitement in the high performance computing
(HPC) community. Many Grid software systems have been developed and it has
become possible to deploy real applications on these systems [3, 4].

A crucial issue for the efficient deployment of HPC applications on the Grid
is the resource selection and mapping. There has been much research on this
issue [5–9]. Globus [10, 11] and Legion [12] present resource management ar-
chitectures that support resource discovery, dynamical resource status monitor,
resource allocation, and job control. These architectures make it easy to create
a high-level scheduler. Legion also provides a simple, generic default scheduler
which can easily be outperformed by a scheduler with special knowledge of the
application [5, 13].

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 313–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

314 Ki-Hyung Kim and Sang-Ryoul Han

MARS [9] and AppLeS [14] provide application-specific scheduling which
determines and actuates a schedule customized for the individual application
and the target computational Grid at execution time.

As an approach of a general resource selection and mapping framework in-
stead of relying on application specific scheduling, a resource selection framework
(RSF) which selects Grid resources by the application’s characteristics was pro-
posed [5]. RSF consists of three phases: selection of possible resources which form
a distributed virtual machine, configuration, and mapping of application sub-
tasks into the selected virtual machines. These three phases can be interrelated.
For the selection of possible resources, RSF defined a set-extended ClassAds
Language that allows users to specify aggregate resource properties (e.g., total
memory, minimum bandwidth). RSF also proposed an extended set matching
matchmaking algorithm that supports one-to-many matching of set-extended
ClassAds with resources. The resource selector locates sets of resources that
meet user requirements, evaluates them based on specified performance model
and mapping strategies, and returns a suitable collection of resources. It also
presented a mapping algorithm for the Cactus application [15].

The matching of tasks to machines and scheduling the execution order of
these tasks has been referred to as a mapping. The general problem of opti-
mally mapping tasks to machines in heterogeneous computing machines has been
shown to be NP-complete [7, 9]. Heuristics developed to perform this mapping
function are often difficult to compare because of different underlying assump-
tions in the original study of each heuristic [9].

This paper proposes a mapping algorithm for GRID applications, named
as MACA (M apping Algorithm for Cooperating GRID applications based on
the Affinity for GRID resource characteristics) which can be used in RSF. The
proposed algorithm utilizes the general affinity of Grid applications for cer-
tain resource characteristics such as CPU speeds, network bandwidth, and in-
put/output handling capability. To show the effectiveness of the proposed map-
ping algorithm, we compare the performance of the algorithm with some previous
mapping algorithms by simulation. The simulation results show that the algo-
rithm could effectively utilize the affinity of Grid applications and shows good
performance.

The rest of this paper is organized as follows. In Section 2, we briefly describe
the resource selection framework which is the basis of our proposed mapping
algorithm. In Section 3, we propose MACA. Section 4 presents the performance
results of MACA. Finally, we summarize our work in Section 5.

2 Preliminaries

This section describes the preliminary backgrounds of the proposed algorithm.
We at first describe the architecture of RSF and a simple mapping algorithm
for Cactus application presented in RSF. Then, we show the Max-min map-
ping heuristic which is used for the performance comparison with our proposed
algorithm.

Mapping Cooperating GRID Applications 315

Fig. 1. The architecture of RSF.

2.1 Resource Selection Framework (RSF)

The architecture of the resource selection framework is shown in Fig. 1. Grid
information service functionality is provided by the Monitoring and Discovery
Service (MDS-2) component [16, 17] of the Globus Toolkit [11]. MDS provides a
uniform framework for discovering and accessing the system configuration and
status information that may be of interest to the schedulers such as server config-
uration and CPU load. The Network Weather Service (NWS) [18] is a distributed
monitoring system designed to track periodically and forecast dynamically re-
source conditions, such as the fraction of CPU available to a newly started
process, the amount of memory that is currently unused, and the bandwidth
with which data can be sent to a remote host. Grid Index Information Service
(GIIS) and Grid Resource Information Service (GRIS) [17] components of MDS
provide resource availability and configuration information.

The Resource Selector Service (RSS) comprises three modules. The resource
monitor acts as a Grid Index Service (GRIS) [17]; it is responsible for querying
MDS and NWS to obtain resource information and for caching this informa-
tion in local memory, refreshing only when associated time-to-live values expire.
The set matcher uses the set-matching algorithm to match incoming application
requests with the best set of available resources. The mapper is responsible for
deciding the topology of the resources and allocating the workload of application
to resources.

For the selection of possible resources, RSF defined a set-extended ClassAds
Language that allows users to specify aggregate resource properties (e.g., total
memory, minimum bandwidth) [5]. RSF also proposed an extended set matching
matchmaking algorithm that supports one-to-many matching of set-extended
ClassAds with resources. Both application resource requirements and application
performance models are specified declaratively, in the ClassAds language, while
mapping strategies, the topic of this paper, can be determined by user-supplied
code. The resource selector locates sets of resources that meet user requirements,
evaluates them based on specified performance model and mapping strategies,
and returns a suitable collection of resources, if any are available.

After selecting the possible resources for a Grid application, the next step
is mapping some selected resources for the application. RSF proposed a simple
mapping algorithm for Cactus application and showed good performance result

316 Ki-Hyung Kim and Sang-Ryoul Han

with the algorithm. We name it as the simple mapping algorithm of RSF in
this paper because the algorithm considers only the bandwidth between nodes
while mapping even though the algorithm show good performance for Cactus
application. The general step of the algorithm is as follows:

1. Pick the node with the highest CPU speed as the first machine of the line.
2. Find the node that has the highest communication speed with the last node

in the line, and add it to the end of the line.
3. Continue Step 2 to extend the line until all nodes are in the line.

2.2 Max-Min Heuristic Mapping Algorithm for Independent Tasks

There has been much research on the mapping issues in heterogeneous comput-
ing environments (HCE) [9]. The general problem of optimally mapping tasks
to machines in HCE has been shown to be NP-complete [7, 9]. The goal of the
heuristic mapping algorithms is to minimize the total execution time, also called
as the makespan, of the metatask. Heuristics developed to perform this mapping
function are often difficult to compare because of different underlying assump-
tions in the original study of each heuristic [9]. Among them, the Max-min
heuristic, one of the most typical heuristic mapping algorithms for independent
tasks on HCE has shown good performance result.

The Max-min heuristic begins with the set U of all unmapped tasks and the
set V of all unmapped nodes in HCE. Then, the set of minimum completion
times, M = min0≤j<μ(ct(ti, mj)), for each ti ∈ U and mj ∈ V , is found, where
ct(t, m) is the completion time of task t on node m. Next, the task with the overall
maximum completion time from M is selected and assigned to the corresponding
machine (hence the name Max-min). Lastly, the newly mapped task is removed
from U , and the process repeats until all tasks are mapped. Intuitively, Max-min
attempts to minimize the penalties incurred from performing tasks with longer
execution times.

3 MACA

This section proposes MACA, a mapping algorithm for cooperating Grid ap-
plications. The intuition of MACA is to utilize the general affinity of Grid ap-
plications for certain resource characteristics such as CPU speeds and network
bandwidth. That is, if an application is a group of independent tasks (that is,
there is no communication between tasks), MACA considers only the processing
power (CPU speed) of nodes during mapping. Conversely, if an application is
a group of highly dependent tasks (that is, they communicate frequently with
one another), MACA considers the network bandwidth of a node with the first
priority during mapping. For this affinity, MACA employs α(k) of a task k as a
measure of the tendency of the computation over the total completion time. It
ranges from 0 (tasks communicate with one another all the time with no local
computation) to 1 (independent tasks).

Mapping Cooperating GRID Applications 317

Fig. 2 shows the pseudo code of MACA. The algorithm takes the sets of
tasks (U) and nodes (V) as input, where | U |≤| V |. The output is the mapping
between all the given tasks in U and some selected nodes out of the given set of
nodes (V).

The first step of the algorithm is to order the tasks in the decreasing order
of the computation time (line 7 in the algorithm). The algorithm finds the best
matching node for each task in this order. The intuition of this ordering of tasks
comes from the Max-min algorithm. Intuitively, Max-min attempts to minimize
the penalties incurred from performing tasks with longer execution times. As-
sume, for example, that the Grid application being mapped has many tasks with
very short execution times and one task with a very long execution time. Map-
ping the task with the longer execution time to its best machine first allows this
task to be executed concurrently with the remaining tasks with shorter execution
times.

The algorithm has an iterative loop until all tasks in U find their own mapped
nodes from V . In each step of the iteration, the algorithm finds two candidate
nodes for mapping: fc and sc. fc, the first candidate node, is the best matching
node from the set of still unmapped nodes while sc, the second candidate node,
is for the sake of the next iteration loop of the comparison.

At the first iteration step, the algorithm tries to find fc as the node with the
highest CPU speed among the nodes for mapping with the task with the highest
computation time (that is, the first one in the ordered task list) (lines 9–11 in
the algorithm). The algorithm then moves the mapped task and node from U
and V , the sets of input tasks and nodes, to W , the set of mapping candidates.

From the second iteration step, fc becomes a node with the largest value of
β,a criteria of the matching from the already mapped node(s). β is defined as
follows (line 14 of the algorithm):

β(y, j) = (CS(j))α(k)/(NL(y, j))1−α(k), (1)

where y is an already mapped node in W , j is the next candidate node of
mapping, α(k) is the relative portion of the computation time over the total
completion time of task k, CS(j) is the CPU speed of node j, and NL(y, j)
is the network latency between node y and j. If α is 1, β(y, j) becomes CS(j)
which has no relationship with the previously selected node.

The algorithm compares the obtained first candidate node fc with the second
candidate node (sc) from the previous step of the iteration and chooses a node
with the greater β value for mapping.

For the sake of the next iteration step, the algorithm also finds the node
(sc) with the second largest value of βsc. sc will be compared with the first
candidate of the next iteration for selecting the next best matching node in the
next iteration step.

As an example of the algorithm, we show a typical mapping process for a
given tasks and nodes. Fig. 3 and Fig. 4 show an example task and node graphs
respectively. Fig. 5 shows the mapping process of the example tasks and nodes.
The first step is the calculation of α from the task graph in Fig. 4. Also we
order the tasks in the decreasing order of CPU speed for the Max-min fashion

318 Ki-Hyung Kim and Sang-Ryoul Han

Data: the set U of all unmapped tasks and the set V of all unmapped nodes,
where | U |≤| V |

Result: the set W of mapping from U to V
begin1

y ← null;2

//y is the previously mapped node.
fc ← sc ← βsc ← null;3

//fc and sc are the first and second candidate nodes for mapping,
respectively.

while U becomes empty do4

For all unmapped tasks i ∈ U and all unmapped nodes j ∈ V , compute5

ct(i, j), the computation time of task i on node j;
Get M = {mi, for all i ∈ U}, where mi = minj∈V ct(i, j) of task i;6

Select task k such that mk = maxi∈U mi, where mi ∈ M ;7

//Select tasks by the Max-min algorithm style.
if y = null then8

pick node n with the highest CPU speed (CS) from all nodes in V ;9

fc ← n;
map task k into node fc, remove k from U and fc from V , and put10

the mapping between k and fc into W ;
y ← fc;11

12

else if y �= null then13

fc ← node f with βf = maxj∈V β(y, j), where14

β(y, j) = (CS(j))α(k)/(NL(y, j))1−α(k);
//α(k) is the relative portion of the computation time over the total

completion time of task k
//CS(j) is the CPU speed of node j
//NL(y, j) is the network latency between node y and j.
//fc and sc are the first and second candidates for mapping.
if βfc < βsc then15

swap fc and sc;16

map task k into node fc, remove k from U and fc from V , and17

put the mapping between k and fc into W ;
y ← fc;18

else19

map task k into node fc, remove k from U and fc from V , and20

put the mapping between k and fc into W ;
//Determine a second candidate for the next iteration step.
fc ← node f with βf = maxj∈V β(y, j), where21

β(y, j) = (CS(j))α(k)/(NL(y, j))1−α(k);
if βfc > βsc then22

sc ← fc;23

end24

y ← fc;25

end26

27

end28

end29

Fig. 2. Pseudo codes of MACA.

Mapping Cooperating GRID Applications 319

35

40

30 50

45

3

3

7 2

10

5

18

12

5

25

A

B

C

D

E

B’s NL
sum

=20=3+12+2+3

18

10

12

25

E

65

30

25

20

40

�����

18101225E

525D

537C

233B

573A

DCBA

(a) Resource graph. (b) Network latency matrix.

Fig. 3. An example resource graph.

Fig. 4. An example task graph.

y � fc
1st-loop

= C

W={C-3}

1
st

loop:

y�D �max(β(C,D),0)

2
nd

loop:

CS(A)=40

CS(B)=30

CS(C)=50

CS(B)=45

CS(B)=35

�(1)=55/75=0.73

β(C,A)=9.8

�(2)=50/70=0.71 �(3)=65/85=0.76 �(4)=60/80=0.75

β(C,B)=9.7

β(C,D)=11.6

β(C,E)=8.1

sc
1st-loop

� null

fc
2nd-loop

sc
2nd-loop

W={C-3,D-4}

sc
2nd-loop

� A

�fc
1st-loop

3
rd

loop: β(D,A)=9.7

β(D,B)=10.1

β(D,E)=6.3

fc
3rd-loop

sc
3rd-loop

W={C-3,D-4,B-1}

sc
3rd-loop

�A � max(β(D,A)��β(C,A))

y�B �max(β(D,B), β(C,A))

4
th

loop: β(B,A)=10.2

β(B,E)=5.1 sc
4th-loop

fc
4th-loop

W={C-3,D-4,B-1,A-2}

sc
4th-loop

�E � max(β(B,E)��β(D,A))

y�A �max(β(B,A), β(D,A))

Fig. 5. Mapping process for the example.

mapping: 3, 4, 1, and 2. In the first loop of the iteration, C becomes fc because
it has the highest CPU speed among the nodes. In all the other iteration loops,
we get two candidate nodes and choose the node with the highest value of β
among them.

320 Ki-Hyung Kim and Sang-Ryoul Han

Fig. 6. Comparison of Mapping results.

Fig. 7. Simulation parameters.

Fig. 6 compares the proposed algorithm with the other two previous algo-
rithms. Max-min considers only the computation time during mapping because
it is naturally a mapping algorithm for independent tasks. Simple mapping algo-
rithm of RSF considers only the network latency between nodes during mapping.

4 Performance Evaluation

For evaluating the proposed mapping algorithm, we compared the proposed al-
gorithm with Max-min and the simple mapping algorithm of RSF by simulation.
The simulation models of the algorithms are developed by C/C++. The neces-
sary parameters for simulation include the information of a Grid application
consisting of several tasks and the node information as shown in Fig. 7. Com-
putation times of tasks are generated randomly. Each application consists of
10 tasks, and each task’s computation time is generated by a random number
generator. We assume that the computation time of a task depends mainly on
the CPU speed even though there are some other aspects such as memory size
and the speed of IO. We also assume that the pre-selection procedure screens
out unmatched nodes such as nodes with lower memory size than the required
minimum memory size. For each value of α, we have performed 10 simulations
with different random numbers.

Fig. 8 shows the simulation results for 10 tasks and 15 nodes. The proposed
algorithm shows better performance when the value of α becomes greater (that
is, the computation time portion of the total completion time becomes greater).
When the variation of the CPU speeds of nodes is large, the proposed algorithm
also shows better results than the small range. This is because the proposed
algorithm considers both the CPU speed and the network latency of resources.

Mapping Cooperating GRID Applications 321

(a) Small variation of CPU speeds. (b) Large variation of CPU speeds.

Fig. 8. Performance comparison (10 tasks and 15 nodes).

5 Conclusion

The Grid technology enables the aggregation of computational resources con-
nected by high speed networks for high performance computing. A crucial issue
for the efficient deployment of GRID applications on the Grid networks is the
resource selection and mapping. RSF was proposed as a generic framework for
resource selection and mapping. This paper proposes a mapping algorithm for
cooperating Grid applications which utilizes the application’s affinity for the
Grid resource characteristics. Depending upon the communication tendency of
the Grid application, the proposed algorithm maps the resources with the affin-
ity. For the performance evaluation of the algorithm, Max-min and the simple
algorithm of RSF are compared with the algorithm by simulation. The simula-
tion results show the proposed algorithm shows good performance by utilizing
the application’s characteristics.

References

1. I. Foster and C. Kesselman. “Computational Grids”, Chapter 2 of The Grid:
Blueprint for a New Computing Infrastructure, Morgan-Kaufman, 1999.

2. I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations” International J. Supercomputer Applications, vol.15,
no.3, pp. 200-222, 2001.

3. G. Allen, D. Angulo, I. Foster, G. Lanfermann, Chuang Liu, T. Radke, E. Seidel
and J. Shalf, “The Cactus Worm: Experiments with Dynamic Resource Discovery
and Allocation in a Grid Environment,” International Journal of High-Performance
Computing Applications, vol.15 no.4, 2001.

4. M. Ripeanu, A. Iamnitchi, and I. Foster, “Cactus Application: Performance Pre-
dictions in Grid Environments,” EuroPar2001, Manchester, UK, August 2001.

5. C.Liu, L.Yang, I.Foster, D.Angulo, “Design and evaluation of a resource selection
framework for Grid applications” in proceedings. 11th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-11), pp. 63–72, 2002.

322 Ki-Hyung Kim and Sang-Ryoul Han

6. A. Takefusa, S. Matsuoka, H. Casanova, and F. Berman, “A Study of Deadline
Scheduling for Client-Server Systems on the Computational Grid,” in Proceed-
ings of the 10th IEEE International Symposium on High Performance Distributed
Computing (HPDC) pp.406–415, 2001.

7. H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Don-
garra, C. Liu, L. Yang, D. Angulo, and I. Foster, “Scheduling in the Grid Appli-
cation Development Software Project,” chapter 1 of Resource Management in the
Grid, Kluwer, 2003,

8. S. Vadhiyar and J. Dongarra, “A Metascheduler For The Grid,” HPDC 2002,
11th IEEE International Symposium on High Performance Distributed Computing,
Edinburgh, Scotland, IEEE Computer Society, pp. 343–351, 2002.

9. T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys and B. Yao, “A Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous Distributed Computing Systems,”
Journal of Parallel and Distributed Computing 61, pp. 810–837, 2001.

10. K. Czajkowski, et al. “A Resource Management Architecture for Metacomputing
Systems,” in Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for
Parallel Processing. 1998.

11. I. Foster, and C. Kesselman, “Globus: A Toolkit-Based Grid Architecture,” In
The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, pp.
259–278, 1999.

12. J. Chapin, et al. “Resource Management in Legion,” in Proceedings of the 5th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP ’99), 1999.

13. H. Dail, G. Obertelli, and F. Berman. “Application-Aware Scheduling of a Magne-
tohydrodynamics Applications in the Legion Metasystem,” in Proceedings of the
9th Heterogeneous Computing Workshop, 2000.

14. F. Berman and R. Wolski. “The AppLeS project: A Status Report,” in Proceedings
of the 8th NEC Research Symposium, 1997.

15. G. Allen et al., “Cactus Tools for Grid Applications,” Cluster Computing, pp.179–
188, 2001.

16. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, “Grid Information Ser-
vices for Distributed Resource Sharing,” In 10th IEEE International Symposium
on High Performance Distributed Computing, IEEE Press, pp. 181–184, 2001.

17. S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski, W. Smith and S. Tuecke, “A
Directory Service for Configuring High-performance Distributed Computations,”
In Proc. 6th IEEE Symp. on High Performance Distributed Computing, pp. 365–
375, 1997.

18. R. Wolski, “Dynamically Forecasting Network Performance Using the Network
Weather Service,” Journal of Cluster Computing, 1998.

{sonamu,histone,taecho}@ece.skku.ac.kr

δ δ λ

δ δ λ

−

−

−

ID3_tree (examples, properties)

If all entries in examples are in the same
category of decision variable
Return a leaf node labeled with that category

Else
Calculate information gain;
Select a property P with highest information
gain;
Assign root of the current tree = P;
Assign properties = properties – P;
for each value V of P

Create a branch of the tree labeled with V;

Assign examples_V = subset of examples
with values V for property P ;

Append ID3_tree (example_V, properties) to
branch V

Timestamp Based Concurrency Control
in Broadcast Disks Environment

Sungjun Lim and Haengrae Cho

Department of Computer Engineering, Yeungnam University,
Gyungsan, Gyungbuk 712-749, Republic of Korea

hrcho@yu.ac.kr

Abstract. Broadcast disks are suited for disseminating information to a
large number of clients in mobile computing environments. In this paper,
we propose a timestamp based concurrency control (TCC) to preserve the
consistency of read-only client transactions, when the values of broadcast
data items are updated at the server. The TCC algorithm is novel in the
sense that it can reduce the abort ratio of client transactions with mini-
mal control information to be broadcast from the server. This is achieved
by allocating the timestamp of a broadcast data item adaptively so that
the client can allow more serializable executions with the timestamp. Us-
ing a simulation model of mobile computing environment, we show that
the TCC algorithm exhibits substantial performance improvement over
the previous algorithms.

Keywords: Mobile computing, broadcast disk, concurrency control,
transaction processing, performance evaluation

1 Introduction

Broadcast disks are suited for disseminating information to a large number of
clients in mobile computing environments [1, 5]. In broadcast disks, the server
continuously and repeatedly broadcasts all the data items in the database to
clients without specific requests. The clients monitor the broadcast channel and
read data items as they arrive on the broadcast channel. The broadcast channel
then becomes a disk from which clients can read data items. Due to its capability
of involving unlimited number of clients, broadcast disks can support large-
scale database applications in a mobile environment like stock trading, auction,
electronic tendering, and traffic control information systems [2].

While data items are broadcast, applications at the server may update their
values. Then the updated data items are broadcast at the next cycle. This means
that the execution results of client applications would be inconsistent if the
applications span multiple broadcast cycles. As a result, the broadcast disks
require a concurrency control algorithm to preserve the consistency and currency
of client applications [2, 9, 11]. Note that the traditional concurrency control
algorithms such as 2-phase locking and optimistic concurrency control cannot
be applied in these environments. This is because they require extensive message
passing between the mobile clients to the server [4].

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 333–341, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

334 Sungjun Lim and Haengrae Cho

In this paper, we propose a timestamp based concurrency control (TCC)
algorithm for read-only client transactions in broadcast disks. While a few con-
currency control algorithms have been proposed recently in broadcast disks [8,
9, 12, 11], their primary concern is to reduce unnecessary transaction aborts by
using considerable amount of downlink communication from the server to clients
for transferring control information. On the other hand, the TCC algorithm re-
quires minimal control information to be broadcast. This comes from the adap-
tive timestamp allocation strategy for broadcast data items so that each client
can allow more serializable executions with the timestamp.

The rest of this paper is organized as follows. Sect. 2 reviews the previous
concurrency control algorithms. Sect. 3 presents the proposed algorithm in detail.
We have evaluated the performance of the algorithm using a simulation model.
Sect. 4 describes the simulation model and analyzes the experiment results.
Concluding remarks appear in Sect. 5.

2 Related Work

Note that access to a broadcast data item is strictly sequential, since a client
transaction needs to wait for the data item to appear on the channel. Further-
more, in most cases, it is not possible to determine the set of data items read by
the client transaction before its execution. This means that the client transac-
tion may read data items from different broadcast cycles, which broadcast values
from different database states. As a result, the execution of the client transaction
can be interleaved with several server update transactions, which might result
in inconsistent transaction executions.

Fig. 1 illustrates the inconsistent transaction executions. We will use a term
“bcycle” to refer a broadcast cycle. A server transaction ST1 updates a data
item x after a client transaction CT1 reads x at kth bcycle. This implies that
the effective execution order of CT1 should precede that of ST1, i.e. CT1 →
ST1. Then another server transaction ST2 updates a data item y using the value
of x that was updated by ST1. As a result, ST1 → ST2 holds. Since ST1 and
ST2 commit at kth bcycle, their results are broadcast at k + 1th bcycle. Now
CT1 reads y that was updated by ST2; hence, ST2 → CT1 holds. Then the total
execution order becomes a cycle, CT1 → ST1 → ST2 → CT1, and CT1 should
be aborted and restarted.

A problem that makes a concurrency control in broadcast disks be difficult
is that clients cannot distinguish the scenario of Fig. 1 from the consistent exe-
cutions. Suppose that ST2 does not read y, and thus ST1 → ST2 does not hold.
So the resulting transaction execution is consistent. However, CT1 should also
be aborted, since CT1 cannot inform the difference without expensive uplink
communication to the server and CT1 must assume the worst-case scenario.

To resolve this problem, a few concurrency control algorithms were proposed
in broadcast disks [7–9, 12, 11]. In [8], the server broadcasts a transaction depen-
dency graph and data items augmented with the identifier of the last transaction
that updated it. In [9], and [12], old versions of data items are broadcast along

Timestamp Based Concurrency Control in Broadcast Disks Environment 335

Fig. 1. A scenario of inconsistent transaction execution.

with current values. In [11], the server broadcasts data items along with a control
matrix. Note that to reduce the transaction abort ratio and uplink communi-
cation, these algorithms require considerable amount of downlink communica-
tion for transferring concurrency control information. The control information
will use up a substantial percentage of downlink bandwidth especially at large
database application, since its size is proportional to the database size or the
number of ever executing transactions. As a result, client transactions might
suffer from long delay due to waiting the broadcast data items, and thus their
response time could be much longer.

The BCC-TI algorithm [6] is closely related to our study in the sense that
it requires minimal control information. The BCC-TI dynamically adjusts the
position of a client transaction in the current serialization order by recording
the timestamp interval associated with the transaction. The server broadcasts
a control information table (CIT) at the beginning of each bcycle. The CIT
includes the timestamps of server transactions committed during the previous
bcycle and their write set. When a client transaction reads a data item or CIT,
its timestamp interval is adjusted to reflect dependencies between the client
transaction and committed server transactions. If the interval becomes invalid
(lower bound ≥ upper bound), an inconsistent execution is detected and the
transaction is aborted. However, the BCC-TI cannot distinguish the scenario of
Fig. 1 from the consistent execution and thus it may reject a consistent one [4].

3 Timestamp Based Concurrency Control

In this section, we propose a timestamp based concurrency control (TCC) al-
gorithm. To reduce the number of unnecessary transaction aborts, the TCC
algorithm allocates timestamp of a broadcast data item adaptively so that each
client can allow more serializable executions.

3.1 Server Algorithm

When a server transaction commits, the transaction and all the data items in its
write set are assigned timestamps. Fig. 2 summarizes the procedure of timestamp

336 Sungjun Lim and Haengrae Cho

A. The following procedure is performed when a server transaction, U , commits dur-
ing the bcycle Bi.
1. Assign current timestamp of the server to TS(U).
2. If U is the first committed transaction at Bi, then ∀d ∈ WS(U), set TS(d) to

TS(U). Copy TS(U) into FIRST.
3. Else determine whether there exists a dependency between U and any trans-

action Uc that has already committed at Bi.
– If {RS(U) ∪ WS(U)} ∩ WS(Uc) �= ∅ or WS(U) ∩ RS(Uc) �= ∅, then set

TS(d) into TS(U), ∀d ∈ WS(U).
– Otherwise, set TS(d) into FIRST, ∀d ∈ WS(U).

4. Append the pair of TS(U) and WS(U) into CIT.
B. The server broadcasts CIT at the beginning of the next bcycle Bi+1.

Fig. 2. Server algorithm of TCC.

allocation. For an update transaction U , WS(U) is a write set of U , RS(U) is its
read set. TS(U) is a timestamp of U . TS(d) is a timestamp of a data item, d. The
control information table (CIT) includes the timestamp of server transactions
committed during the previous bcycle and their write set. The CIT allows each
client to determine whether its transaction has introduced a non-serializable
execution with respect to the committed server transactions.

The basic idea of Fig. 2 is to distinguish the serialization order of server
transactions from their commit order. Note that the timestamp is monoton-
ically increasing and each server transaction has its own timestamp when it
commits. This means that the timestamps represent the commit order of server
transactions. If we assign the timestamp of each data item to the timestamp
of its updating transaction as the BCC-TI does, we could not exploit potential
serialization orders those are different from the commit order. To distinguish
between two orders, the TCC remembers another timestamp, FIRST. FIRST is
the timestamp of a transaction committed first at the current bcycle. After that,
when a transaction U commits and it does not depend on other committed trans-
actions of the current bcycle, the timestamps of data items in WS(U) are set to
FIRST not TS(U). Then the client may allow more serialization executions when
it compares the timestamp of data items as the next section describes.

3.2 Client Algorithm

Similar to the BCC-TI [6], a client transaction is assigned a timestamp interval
to detect non-serializable executions. For a client transaction Q, let LB(Q) and
UB(Q) denote the lower bound and the upper bound of the timestamp interval
of Q, respectively. If the timestamp interval shuts out, i.e. LB(Q) > UB(Q), Q
has to be aborted. LB(Q) and UB(Q) are initialized to 0 and ∞, respectively.

When Q reads a data item d, step B of Fig. 3 is performed. The client first
changes LB(Q) to the maximum of current LB(Q) and the timestamp of d. Q
can proceed as long as the new LB(Q) is still smaller than UB(Q). If LB(Q)
becomes larger than UB(Q), then there is a non-serializable execution by Q

Timestamp Based Concurrency Control in Broadcast Disks Environment 337

A. The following procedure is performed when a client transaction Q is requested.
1. Timestamp interval is set to (0, ∞).
2. LB(Q) = 0, UB(Q) = ∞.

B. The following procedure is performed when Q reads a data item d.
1. ReadSet(Q) = ReadSet(Q) ∪ {d}.
2. LB(Q) = max(LB(Q), TS(d)).
3. If LB(Q) = UB(Q) and d ∈ INV, then Q is aborted and restarted.
4. If LB(Q) > UB(Q), then Q is aborted and restarted.

C. The following procedure is performed when the client receives the control infor-
mation table (CIT). INV is initialized to empty before receiving each CIT.
1. For ∀ Ui ∈ CIT, do the following steps.

– If WS(Ui) ∩ ReadSet(Q) �= ∅, then UB(Q) = min(TS(Ui), UB(Q)).
– If UB(Q) is changed, INV = INV ∪ WS(Ui).

2. If LB(Q) > UB(Q), then Q is aborted and restarted.

Fig. 3. Client algorithm of TCC.

and Q has to be aborted. When LB(Q) is equal to UB(Q), TCC and BCC-
TI behave differently. The BCC-TI has to abort Q whenever LB(Q) is equal
to UB(Q). However, in the TCC, all of data items updated by independent
transactions have the same timestamp (FIRST). So the TCC can continue Q
even though LB(Q) is equal to UB(Q) if the equality comes from independent
server transactions. The TCC implements this idea by maintaining an additional
variable INV at the client.

When the client receives a CIT at the beginning of the next bcycle, the read
set of Q is compared with the write set of every committed server transaction
in the CIT. If there is an overlap, the server transaction invalidates Q. So the
client changes UB(Q) to the minimum of current UB(Q) and the timestamp
of the server transaction. If UB(Q) is changed as a result, the write set of the
server transaction is appended to INV (Step C.1). Now coming back to Step B.2,
if LB(Q) becomes equal to UB(Q) after reading d, the client checks whether d
is included in INV. If INV does not include d, it means that the updating server
transaction of d and the invalidating server transaction of Q are independent to
each other. Then Q can proceed.

For example, in Fig. 1, we first suppose that ST2 does not read y and thus
the execution is consistent. We assume that WTS(x) is 1 and current timestamp
is 2 at the start of kth bcycle. Then during the kth bcycle TS(ST1) and TS(x)
are set to 2. FIRST is also set to TS(ST1). The TS(y) is set to FIRST because
ST2 is independent of ST1. At the client, the timestamp interval of CT1 is set
to (1, ∞) after CT1 reads x. At the start of k +1th bcycle, UB(CT1) is updated
to 2 and INV becomes {x}. When CT1 reads y, the timestamp interval becomes
(2, 2). Note that CT1 can proceed since INV does not include y. If ST2 reads y
and thus there is a dependency between ST1 and ST2, TS(y) becomes TS(ST2)
that is greater than 2. As a result, when CT1 reads y the timestamp interval of
CT1 shuts out, and CT1 is aborted and restarted.

338 Sungjun Lim and Haengrae Cho

Table 1. Experiment parameters.

Server Parameters

ServerDBsize Number of data items in database 1000
STlength Server transaction length 8
NumST Number of server transactions per bcycle 4 ∼ 36
WriteProb write operation probability 0.0 ∼ 1.0

Client Parameters

CTlength Client transaction length 1 ∼ 9
OptDelay Mean inter-operation delay 1
TranDelay Mean inter-transaction delay 2
TRSizeDev Deviation of transaction length 0.1

4 Performance Evaluation

We compare the performance of the TCC with the BCC-TI. In this section, we
first describe the experiment model. Then we show the experiment results and
analyze their meanings.

4.1 Experiment Model

The simulation model consists of a server, a client, and a broadcast disk. We
assume that there is only one client because the performance of the concurrency
control algorithm for read-only transactions is independent of the number of
clients. Transactions access data items uniformly throughout the entire database.
Table 1 shows the experiment parameters and their settings. The simulation
model was implemented using the CSIM discrete-event simulation package [10].

A server transaction executes STlength operations, over which the proba-
bility of write operation is WriteProb. A client transaction executes read-only
operations. The average number of operations per client transaction is deter-
mined by a uniform distribution between CTlength ± CTlength × TRSizeDev.
For each operation, the client transaction waits for OptDelay broadcast units
and then makes the next read request. The actual control of client transaction
into the system is controlled by the TranDelay parameter, which is modeled as
an exponential distribution.

The server fills the broadcast disk with data items at the beginning of a
bcycle. Each bcycle consists of a broadcast of all the data items in the database
along with the associated control information. The control information consists
of a table containing the timestamps and write sets of the server transactions
committed at the last bcycle and an array of length ServerDBsize containing the
write timestamps of data items. Each element in the array is broadcast along
with the corresponding data items. We do not consider the effects of caching in
this performance study. Then if the client misses any data item in the current
bcycle, it may have to wait for the next bcycle.

The performance metric used in the experiment are the abort rate and trans-
action response time. The abort ratio is the average number of aborts before

Timestamp Based Concurrency Control in Broadcast Disks Environment 339

Fig. 4. Varying the length of client transactions.

the client transactions can commit. Transaction response time is measured as
the difference between when a client transaction is submitted first and when the
client transaction is successfully committed. The time includes any time spent
due to restarts.

4.2 Experiment Results

We first compare the performance by varying CTlength. NumST is set to 16
and WriteProb is set to 0.5. Fig. 4 shows the performance results. As CTlength
increases, both algorithms perform worse. This is because a client transaction
has to wait for a larger number of bcycles and the abort ratio increases as a
result. This is why the TCC outperforms the BCC-TI when CTlength is large.
The TCC can reduce the number of unnecessary transaction aborts by allocating
timestamp of a broadcast data item adaptively so that the client can allow more
serializable executions.

We also compare the performance by varying WriteProb. Fig. 5 shows the
experiment results where NumST is set to 8 and CTlength is set to 4 and 5. We
see that as WriteProb increases, the abort ratio and the response time also in-
crease. Furthermore, the TCC outperforms the BCC-TI at high WriteProb. Note
that WriteProb affects the probability of data conflicts between the client trans-
action and server transactions. When WriteProb is high, the client transaction
often conflicts with some server transactions and thus there are more chances to
results in false dependency between transactions. This is why the performance
improvement of the TCC becomes more distinguished when CTlength is set to
the high value of 5.

We finally compare the performance by varying NumST. Fig. 6 shows the
performance results when WriteProb is set to 0.5 and CTlength is set to 4.
By increasing NumST, the possibility of data conflicts at the client should also
increase. As a result, the abort ratio and the response time increase linearly.
Similar to the previous experiment, the TCC performs better that the BCC-TI
with respect to both the abort ratio and the response time. The performance
difference becomes significant as NumST increases. This is because as more
server transactions execute per cycle, BCC-TI should suffer from frequent aborts
of client transactions due to false dependency with server transactions.

340 Sungjun Lim and Haengrae Cho

Fig. 5. Varying the write probability of server transactions.

Fig. 6. Varying the number of server transactions (per cycle).

5 Conclusions

In this paper, we have proposed a timestamp based concurrency control (TCC)
algorithm for client transactions in broadcast disk environments. To reduce the
abort ratio of client transactions, most of previous concurrency control algo-
rithms consume considerable amount of downlink bandwidth for transferring
concurrency control information. Instead the TCC allocates the timestamp of
a broadcast data item adaptively so that the client can allow more serializable
executions with the timestamp. As a result, the TCC can minimize concurrency
control information with the reduced abort ratio.

We have compared the performance of the TCC with the BCC-TI algorithm
that can also minimize the downlink bandwidth. The TCC performs better than
or similar to the BCC-TI throughout the experiments. In particular, the per-
formance improvement is significant (a) when the client transaction is long,
(b) when the number of concurrent server transactions is large, or (c) when the
server transaction executes a lot of write operations. This result is very encour-
aging with regard to ever increasing complexity of information system.

Timestamp Based Concurrency Control in Broadcast Disks Environment 341

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast Disks: Data Manage-
ment for Asymmetric Communication Environment. In: Proc. of ACM SIGMOD
(1995) 199-210

2. Cho, H.: Concurrency Control for Read-Only Client Transactions in Broadcast
Disks. IEICE Trans. on Communications. E86-B (2003) 3114-3122

3. Garcia-Molina, H., Wiederhold, G.: Read-Only Transactions in a Distributed
Database. ACM Trans. on Database Syst. 7 (1982) 209-234

4. Huang, Y., Lee, Y-H.: STUBcast - Efficient Support for Concurrency Control in
Broadcast-based Asymmetric Communication Environment. In: Proc. 10th Int.
Conf. Computer Commun. and Networks (2001) 262-267

5. Jing, J., Heral, A., Elmagarmid, A.: Client-Server Computing in Mobile Environ-
ments. ACM Comp. Surveys 31 (1999) 117-157

6. Lee, V., Son, S-H., Lam, K-W.: On the Performance of Transaction Processing
in Broadcast Environments. Lecture Notes in Computer Science Vol. 1748 (1999)
61-70

7. Madrina, S., Mohania, M., Bhowmick, S., Bhargava, B.: Mobile Data and Trans-
action Management. Infor. Sci. 141 (2002) 279-309

8. Pitoura, E.: Scalable Invalidation-Based Processing of Queries in Broadcast Push
Delivery. Lecture Notes in Computer Science. Vol. 1552 (1999) 230-241

9. Pitoura, E., Chrysanthis, P.: Exploiting Versions for Handling Updates in Broad-
cast Disks. In: Proc. 25th Int. Conf. VLDB (1999) 114-125

10. Schwetmann, H.: User’s Guide of CSIM18 Simulation Engine. Mesquite Software,
Inc. (1996)

11. Shanmugasundaram, J., Nithrakashyap, A., Sivasankaran, R., Ramamritham, K.:
Efficient Concurrency Control for Broadcast Environments. In: Proc. ACM SIG-
MOD (1999) 85-96

12. Shigiltchoff, O., Chrysanthis, P., Pitoura, E.: Multiversion Data Broadcast Orga-
nizations. Lecture Notes in Computer Science. Vol. 2435 (2002) 135-148

shpark21@kookmin.ac.kr, sooyoungshin@korea.com

gglim@sejong.ac.kr

λ−==

=

=

ksl@mju.ac.kr

•

•

•

•

•
•

•
•

re-
quest Adaptee specificRequest

Adapter
Adaptee Adapter specificRequest

Adaptee .

ServiceA ServiceB ServiceC
Façade doAll

RealSubject

RealSubject
Proxy request

RealSubject
RealSubject Proxy Subject

•

•

•

•

Boiler, Turbine,
Condenser, and Pump

Boiler Pump
Turbine Condenser

Ship
Boiler Turbine Con-

denser Pump Ship

Pump

Pump

•

•

•

•

•

•

Ontology Based Integration of Web Databases
by Utilizing Web Interfaces

Jeong-Oog Lee, Myeong-Cheol Ko, and Hyun-Kyu Kang

Dept. of Computer Science, Konkuk University,
322 Danwol-dong, Chungju-si, Chungcheongbuk-do, 380-701, Korea

{ljo,cheol,hkkang}@kku.ac.kr

Abstract. The amount of information which we can get from web envi-
ronments, especially in the web databases, has rapidly grown. And, many
questions often can be answered using integrated information than using
single web database. Therefore the need for integrating web databases
became increasingly. In order to make multiple web databases to in-
teroperate effectively, the integrated system must know where to find
the relevant information which is concerned with a user’s query on the
web databases and which entities in the searched web databases meet
the semantics in the user’s query. To solve these problems, this paper
presents an approach which provides ontology based integration method
for multiple web databases. The proposed approach uses the web inter-
faces through which generally a user can acquire desired information in
the web databases.

1 Introduction

One of the advantages of a multidatabase system is that it allows each local
DBMS to participate in the system and at the same time it preserves the auton-
omy of the local DBMSs. However, making it possible for two or more databases
to interoperate effectively has many unresolved problems. The most basic and
fundamental problem is heterogeneity [1,2,3]. It can be categorized into platform
heterogeneity and semantic heterogeneity. The semantic heterogeneity is due to
the different database schemas (schema heterogeneity) and/or different logical
representation of data (data heterogeneity).

Meanwhile, the amount of information which we can get from web environ-
ments, especially in the web databases, has rapidly grown. And, many ques-
tions often can be answered using integrated information than using single web
database. Therefore the need for integrating web databases became increas-
ingly. In order to make multiple web databases to interoperate effectively, the
integrated system must know where to find the relevant information which is
concerned with a user’s query on the web databases and which entities in the
searched web databases meet the semantics in the user’s query.

This paper suggests amethod to integratedatabases, especiallywebdatabases.
The proposed approach uses the web interfaces through which generally a user
can acquire desired information in the web databases.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 360–369, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ontology Based Integration of Web Databases by Utilizing Web Interfaces 361

Information in web databases can be provided to the users easily through web
interfaces. With analyzing web interfaces, an information integration system can
integrate web databases without concerning the database structures.

The rest of this paper is organized as follows. Section 2 shows an integrated
retrieval system for web databases using ontology and multi-agents. Section 3
reports results of several experiments about the proposed system. Finally, in
section 4, we offer our conclusions.

2 Integrating Heterogeneous Web Databases

2.1 Databases and Web Interfaces

Generally, a web site which provides information via databases is implemented in
two phases. First, a database for information of the web site is designed. In next
phase, web interface (or template) for retrieving information of the database
is constructed. A user’s query can be delivered to the query processor of the
database through web interface. Figure 1 shows two web interfaces for plant
related databases. With analyzing web interfaces, an information integration
system can integrate web databases without concerning the database structures.
The basic idea is to create virtual database tables for the databases using fields
in web interfaces, which provides ease mechanism for integration regardless of
database models, DBMSs, and so forth. That is, it needs not to consider platform
heterogeneity. Figure 2 shows a sample virtual table for one of the example web
databases in figure 1, Shartsmith Herbarium database. The integration system
for web databases can integrate web databases easily using these virtual database
tables, not needing to know all the actual database schema information.

(a) CalFlora database. (b) Starsmith Herbarium database.

Fig. 1. Sample databases with Web-based interfaces.

362 Jeong-Oog Lee, Myeong-Cheol Ko, and Hyun-Kyu Kang

Fig. 2. A sample virtual database table for Sharsmith Herbarium database.

2.2 SemQL: Semantic Query Language

Seen from a semantic perspective, the process of database design proceeds from
the real world to the data. The designer develops his own conceptualization
of the real world and turns his conceptualization into a database design. This
has led designers to develop different, often incompatible, schemas for the same
information. Therefore, users needing to combine information from several het-
erogeneous databases are faced with the problem of locating and integrating
relevant information.

One of the efficient and effective approaches is allowing users to issue queries
to a large number of autonomous and heterogeneous databases with his/her own
concepts. It frees users from learning schemas. We have proposed SemQL as a
semantic query language for users to issue queries using not schema information
but concepts that the users know [4,5].

The SemQL is similar to SQL except that it has no FROM clause. The basic
form of the SemQL is formed of the two clauses SELECT and WHERE and has
the following form:

SELECT < conceptlist >
WHERE < condition >

Here < conceptlist > is a list of concepts whose values are to be retrieved by
the query. The < condition > is a conditional search expression that identifies
the tuples to be retrieved by the query. As for the entity information as described
FROM clause in SQL, it is appended to the query automatically when the query
processor processes the query.

The SemQL clauses specify not the entity or attribute names in component
database schemas but concepts about what users want. For example, suppose a
user wants to find those plants which live in wetland habitats, assuming that the
user is familiar with SQL but knows neither of the component database schemas.
Then the user might issue a query in SemQL using concepts that he/she knows;

SELECT plant.name
WHERE plant.habitat = “wetland”

Another user might issue a query as follows based on his/her concepts;

SELECT flora.name
WHERE flora.habitat = “wetland”

Though, in above two queries, “plant” and “flora” are different in the point
of word form, the two queries are semantically equivalent.

Ontology Based Integration of Web Databases by Utilizing Web Interfaces 363

2.3 The Procedure of Semantic Query Processing

An ontology is an explicit specification of a conceptualization [6,7]. When the
knowledge of a domain is represented in a declarative formalism, the set of
objects that can be represented is called the universe of discourse. This set
of objects, and the describable relationships among them, are reflected in the
representational vocabulary with which a knowledge-based program represents
knowledge. Ontologies can be applied for inter-operability among systems, com-
munications between human being and systems, increasing system’s reusability
and so forth. There are several endeavors within the industrial and academic
communities that address the problem of implementing ontologies, such as TOP,
WordNet, Ontolingua, Cyc, Frame Ontology, PANGLOSS, MikroKosmos, SEN-
SUS, EngMath, PhysSys, TOVE, and CHEMICALS [8,9]. In our approach, on-
tology has a role of semantic network which is for extracting concepts from user’s
queries and integrating information of web databases.

Figure 3 shows an integrated retrieval system for Web databases using on-
tology technology and multiagents [10,11]. The User Interface Agent parses the
user’s query, extracts concepts in the query using ontological concepts and re-
lations, requests for query processing, and displays the processed results to the
user. The Ontology Agent manages the ontology and cooperates with the Broker

Fig. 3. An information retrieval system for web databases.

364 Jeong-Oog Lee, Myeong-Cheol Ko, and Hyun-Kyu Kang

Agent and Structure Mapping Agent. The Broker Agent identifies the relevant
Web databases using information received from the User Interface Agent and the
Ontology Agent. The Structure Mapping Agent generates the mappings between
concepts in the original query and information of the identified Web databases.
The Sub-Query Handling Agent reformulates the original query into multiple
sub-queries for each Web database according to the mappings generated by the
Structure Mapping Agent. The Resource Agent resides in each Web database
and executes the sub-query received from the Sub-Query Handling Agent ac-
cording to the schema information of the Web database in which it resides, and
then sends the results to the Integration Agent. The Integration Agent, in turn,
manages the intermediate results from various Web databases and presents the
integrated results to the users.

3 Experiments and Evaluation

To evaluate the proposed approach for information sharing in multidatabase
systems, we have conducted some experiments on several web databases.

General information retrieval systems for web documents require the evalu-
ation of how precise is the answer set. This type of evaluation is referred to as
retrieval performance evaluation. Such an evaluation is usually based on a test
reference collection and on an evaluation measure. The test reference collection
consists of a collection of documents, a set of example information requests, and
a set of relevant documents provided by specialists for each example information
request.

Given a retrieval strategy S, the evaluation measure quantifies, for each ex-
ample information request, the similarity between the set of documents retrieved
by S and the set of relevant documents provided by the specialists. This provides
an estimation of the goodness of the retrieval strategy S [12].

Applying the method of the retrieval performance evaluation for web docu-
ments, the experiments have been conducted in the aspect of retrieval perfor-
mance which measures how effectively the user’s semantic queries are processed
through the proposed methods.

3.1 Implementation

As for information sources, we have chosen four Web databases related to plant
information listed as follows:

– Component database 1 (CDB1): CalFlora database at Berkeley University.
– Component database 2 (CDB2): Sharsmith Herbarium database at San Jose

State University.
– Component database 3 (CDB3): Plants database developed by U.S. Depart-

ment of Agriculture.
– Component database 4 (CDB4): Species database constructed by Plants For

A Future which is a resource centre for plants.

In Figure 1, web interfaces for CDB1 and CDB2 are already shown.

Ontology Based Integration of Web Databases by Utilizing Web Interfaces 365

Fig. 4. An example of different query statements requesting the same information.

3.2 Contents and Methods for Experiments

A query may be issued in various forms according to the user’s query patterns
and provided web interfaces. Figure 4 shows such a case. Though both queries,
Query 1 and Query 2, require the same information, they are different in query
forms. Of course, Query 1 is a more general query form. However, according to
the interfaces of some information sources, queries must be issued like Query 2.
A module for query expansion expands the user’s original query to all the possible
forms of queries.

Experiments have been conducted to determine two things: the query pro-
cessing time of the query processor, and query processing ability. In both cases,
experiments have been conducted with and without query expansion.

Using the constructed system, all the possible queries were prepared for ex-
periments based upon all the concepts in the component database schemas.
Afterwards, each query was processed by the query processor, the results were
analyzed, and the retrieval performance was evaluated.

In the experiments, given a set of queries, performance was evaluated accord-
ing to the results of query processing in each component database. The meaning
of the notations and equations used in the evaluation are as follows;

– Q: set of total queries.
– RCDBi (i=1,2,3,4): set of queries related to CDBi, which must be processed

by CDBi.
– PCDBi (i=1,2,3,4): set of queries actually processed by CDBi.
– RCDBi , PCDBi ⊆ Q.
– RpCDBi = RCDBi ∩ PCDBi .
– |Q|: the number of queries Q.
– |RCDBi |: the number of queries in RCDBi .
– |PCDBi |: the number of queries in PCDBi .
– |RpCDBi |: the number of queries in RpCDBi .
– RecallCDBi = |RpCDBi

|
|RCDBi

| .

– PrecisionCDBi = |RpCDBi
|

|PCDBi
| .

– ErrorCDBi = 1− PrecisionCDBi.

RCDBi is extracted from the set of total queries, Q, which must be processed
by CDBi. PCDBi is a set of queries processed by CDBi, after each query in Q
is processed through the query processor. RpCDBi is a set of queries that are
included in the intersection set of RCDBi and PCDBi .

366 Jeong-Oog Lee, Myeong-Cheol Ko, and Hyun-Kyu Kang

RecallCDBi is the ratio of the actually processed queries to the set of queries
which must be processed by CDBi, PrecisionCDBi is the ratio of relevant queries
to CDBi to the set of queries which are actually processed by CDBi. ErrorCDBi

is the ratio of irrelevant queries to CDBi to the set of queries which are actually
processed by CDBi, which is the probability of the query processor issuing errors
at CDBi during the query processing procedure.

3.3 Results and Evaluation

The number of total queries involved in the experiments (|Q|) is 134. The results
are shown below.

– The results of the experiments with query expansion
|RCDB1 | = 56, |PCDB1| = 54, |RpCDB1| = 54
|RCDB2 | = 55, |PCDB2| = 27, |RpCDB2| = 27
|RCDB3 | = 23, |PCDB3| = 23, |RpCDB3| = 22
|RCDB4 | = 87, |PCDB4| = 85, |RpCDB4| = 85

– The results of the experiments without query expansion
|RCDB1 | = 56, |PCDB1| = 31, |RpCDB1| = 31
|RCDB2 | = 55, |PCDB2| = 27, |RpCDB2| = 27
|RCDB3 | = 23, |PCDB3| = 17, |RpCDB3| = 16
|RCDB4 | = 87, |PCDB4| = 35, |RpCDB4| = 35

According to the acquired primary data and the equations in section 3.2,
recall rates, precision rates, and error rates for each component database were
calculated. Recall rates for each component database are shown in figure 5 in
graphical form.

With query expansion, the recall rate for CDB1 is 96.43% and very excellent,
while the recall rate for CDB2 is 49.09% and is not good compared to that of

Fig. 5. Recall rates for each component database.

Ontology Based Integration of Web Databases by Utilizing Web Interfaces 367

CDB1. This is because that almost all the input fields of the web interface for
CDB1 are structured such as to enable users to select one of the values for each
input field (see figure 1(a)), while all the input fields of the web interface for
CDB2 require users to insert values in the fields (see figure 1(b)).

That is, CDB1 provides more schema information than CDB2. If one ob-
serves carefully the result of the experiments, one can understand that the web
DB which provides more and detailed schema information shows very high recall
rate. As almost all the input fields of the interface for CDB3 are structured such
as to enable users to select one of the values for each input field, CDB3 also
shows a very high recall rate. As the same reason, CDB4 shows a similar level
of recall rate.

Fig. 6. Precision rates for each component database.

Meanwhile, the experiments without query expansion show that the recall
rates of all the component databases are not high, which means that each com-
ponent database provides the same information in various different forms.

Precision rates for each component database are shown in figure 6. In the case
of precision rates, regardless of whether query expansion is included or not, the
experiments show very excellent precision rates in all the component databases.
This means that the proposed system exactly reformulates the original query into
sub-queries that are for component databases identified during the procedure of
query processing.

The average time for processing a query, average recall rate and precision
rate for all the component databases, with and without query expansion, are
shown in Table 1.

With query expansion, the average time for processing a query is 2.7 times
slower than that without query expansion. Regardless of whether query expan-
sion is included or not, the precision rate is very high, while recall rate varies
according to whether the query is expanded or not. Although query processing
with query expansion needs more processing time, it is, however, more efficient
in the aspect of recall rate.

368 Jeong-Oog Lee, Myeong-Cheol Ko, and Hyun-Kyu Kang

Table 1. Average time for processing a query, average recall rate, and average precision
rate, with and without query expansion.

average time average average
for processing recall precision

a query rate rate
(sec.) (%) (%)

with query 4.11 84.72 98.91
expansion

without query 1.52 53.56 98.53
expansion

4 Conclusions

The proposed approach provides common domain knowledge using ontology as
knowledge base, so that each information source can be merged into the system
without specific domain knowledge of other sources. That is, each information
source can describe its domain knowledge and construct its own semantic net-
work independent of other information sources, which enables each information
source to be merged into the system easily. This kind of approach guarantees the
autonomy of each information source and gives users needing to integrate infor-
mation an easy and efficient method for information integration. Also, it enables
a number of information sources to be merged into the information integration
system, so that it gives good extensibility to the system.

As the experiments have been conducted in the level of laboratory with four
web databases in the real world, if the proposed approach is applied to an un-
specified number of the general databases, both recall rate and precision rate are
more or less expected to be decreased. However, if sufficient schema information
of each web database is provided, the proposed approach for information shar-
ing among heterogeneous web databases is deserved to be regarded as one of the
prominent approaches for information integration.

References

1. R. Hull, “Managing semantic heterogeneity in databases: a theoretical prospec-
tive”, Proc. 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pp. 51-61, 1997.

2. C. Batini, M. Lenzerini, and S.B. Navathe, “A comparative analysis of methodolo-
gies for database schema integration”, ACM Computing Surveys, 18(4), 1986.

3. A. M. Ouksel, A. P. Sheth, “Semantic Interoperability in Global Information Sys-
tems: A Brief Introduction to the Research Area and the Special Section”. SIG-
MOD Record, 28(1), pp. 5-12, 1999.

4. J. O. Lee, D. K. Baik, “Semantic Integration of Databases using Linguistic Knowl-
edge”, Lecture Notes in Artificial Intelligence, LNAI 1747, Springer-Verlag, 1999.

5. J. O. Lee, D. K. Baik, “SemQL: A Semantic Query Language for Multidatabase
Systems”, Proc. 8th International Conf. on Information and Knowledge Manage-
ment (CIKM-99), 1999.

Ontology Based Integration of Web Databases by Utilizing Web Interfaces 369

6. Mike Uschold and Michael Gruninger, “Ontologies: Principles, Methods and Ap-
plications”, Knowledge Engineering Review, 1996.

7. Thomas R.Gruber, “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing”, International Journal of Human-Computer Studies, 1995.

8. Maurizio Panti, Luca Spalazzi, Alberto Giretti, “A Case-Based Approach to Infor-
mation Integration” , Proceedings of the 26th VLDB conference, 2000.

9. J. Hammer, H. H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, J.
Widom, “Information translation, mediation, and mosaic-based browsing in the
tsimmis system”, In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 1995.

10. Marian Nodine, Jerry Fowler, Brad Perry, “An Overview of Active Information
Gathering in InfoSleuth”, InfoSlueth Group, 1998.

11. Jeong-Oog Lee,Yo-Han Choi, “Agent-based Layered Intelligent Information Inte-
gration System Using Ontology and Metadata Registry”, Lecture Notes in Com-
puter Science, LNCS 2690, Springer-Verlag, 2003. 7.

12. R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, 1st Ed., pp. 73-97,
Addison-Wesley, 1999.

A Web Services-Based Distributed Simulation
Architecture for Hierarchical DEVS Models

Ki-Hyung Kim1 and Won-Seok Kang2

1 Dept. of Computer Eng. Yeungnam University,
214-1 Daedong, Gyungsan, Gyungbuk, Korea

kkim@yu.ac.kr

http://nclab.yu.ac.kr
2 Advanced Information Technology Research Center (AITrc), KAIST

373-1, Kusung-Dong, Yusong-Gu, Daejon, Korea
wskang@world.kaist.ac.kr

Abstract. The Discrete Event Systems Specification (DEVS) formalism
specifies a discrete event system in a hierarchical, modular form. This pa-
per presents a web-services-based distributed simulation architecture for
DEVS models, named as DEVSCluster-WS. DEVSCluster-WS is actu-
ally an enhanced version of DEVSCluster by employing the web services
technology, thereby retaining the advantages of the non-hierarchical dis-
tributed simulation compared to the previous hierarchical distributed
simulations. By employing the web services technologies, it describes
models by WSDL and utilizes SOAP and XML for inter-node commu-
nication. Due to the standardized nature of the web service technology,
DEVSCluster-WS can effectively be embedded in the Internet without
adhering to specific vendors and languages. To show the effectiveness of
DEVSCluster-WS, we realize it in Visual C++ and SOAPToolkit, and
conduct a benchmark simulation for a large-scale logistics system. We
compare the performance of DEVSCluster-WS with DEVSCluster-MPI,
the MPI-based implementation of DEVSCluster. The performance result
shows that the proposed architecture works correctly and could achieve
tolerable performance.

1 Introduction

Discrete-event simulation is frequently used to analyze and predict the per-
formance of systems. Simulation of large, complex systems remains a major
stumbling block, however, due to the prohibitive computation costs. Distributed
discrete-event simulation (or shortly, distributed simulation) offers one approach
that can significantly reduce these computation costs.

Conventional distributed simulation algorithms assume rather simple simu-
lation models in that the simulation consists of a collection of logical processes
(LPs) that communicate by exchanging timestamped messages or events. The
goal of the synchronization mechanism is to ensure that each LP processes events
in time-stamp order; this requirement is referred to as the local causality con-
straint. The algorithms can be classified as being either conservative [1] or opti-
mistic [2]. Time Warp is the most well known optimistic method. When an LP

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 370–379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Web Services-Based Distributed Simulation Architecture 371

receives an event with timestamp smaller than one or more events it has already
processed, it rolls back and reprocesses those events in timestamp order.

Since distributed simulation deals with large and complex systems, the follow-
ing issues should be addressed: model verification and validation, model reusabil-
ity, and user-transparency of distributed simulation details, etc. The Discrete
Event Systems Specification (DEVS) formalism, developed by Zeigler [3], is a
formal framework for specifying discrete event models. The DEVS modeling and
simulation approach provides an attractive alternative to conventional logical
process-based modeling approaches used in distributed simulation by its set-
theoretical basis, its independence of any computer language implementation,
and its modular, hierarchical modeling methodology.

There have been several research efforts in the distributed simulation of
DEVS models. They can broadly be classified into two approaches: hierarchi-
cal and non-hierarchical ones. Adhering to the traditional hierarchical simu-
lation mechanism of DEVS, the hierarchical distributed simulation approach
has exploited only specific parallelism inherent in the formalism [3, 4]. The ap-
proach can be categorized into two schemes: synchronous and asynchronous ones.
Synchronous schemes utilize only the parallelism in simultaneous events, and
asynchronous schemes combine both the hierarchical simulation mechanism and
distributed synchronization algorithms such as Time Warp [5].

Belonging to the non-hierarchical distributed simulation approach, DEVS-
Cluster transforms the model structure into a non-hierarchical one during sim-
ulation execution [6]. By simplifying the model structure, DEVSCluster can be
easily extended to the distributed version. It employs Time Warp as a basic syn-
chronization protocol. It applies distributed object technologies such as CORBA
(Common Object Request Broker Architecture) [7] as an underlying communi-
cation mechanism which is particularly useful for the DEVS simulation since it
is inherently an object oriented modeling formalism.

Meanwhile, the adoption of the web services technology into the scientific
distributed computing has been researched actively [8]. The use of the stan-
dard protocols, such as SOAP, XML, HTTP, WSDL, and UDDI, easily achieves
high interoperability between heterogeneous computing environments such as
Grids [13] due to its inherent characteristics: language- and platform-neutral.

In this paper we propose a web-services-based distributed simulation archi-
tecture for DEVS models, named as DEVSCluster-WS. DEVSCluster-WS is
actually an enhanced version of DEVSCluster by employing the web services
technology, thereby retaining the advantages of the non-hierarchical distributed
simulation compared to the previous hierarchical distributed simulations. By em-
ploying the web services technologies, it describes models by WSDL and utilizes
SOAP and XML for inter-node communication. Due to the standardized nature
of the web service technology, DEVSCluster-WS can effectively be embedded in
the Internet without adhering to the specific vendors and languages.

To show the architectural effectiveness of DEVSCluster-WS, we design a
model of a large-scale logistics system and perform experiments in a distributed
environment. We evaluate the performance of DEVSCluster-WS by comparing

372 Ki-Hyung Kim and Won-Seok Kang

the simulation results with DEVSCluster-MPI, the MPI-based implementation
of DEVSCluster [6]. The results show that the overhead of the XML processing
could be tolerable compared to the efficient MPI-based communication [9].

The rest of this paper is organized as follows: Section 2 describes an overview
of the DEVS formalism. Section 3 presents DEVSCluster-WS. Section 4 presents
the performance results. Finally, Section 5 concludes the paper.

2 Preliminaries

This section describes the DEVS formalism, the distributed simulation mech-
anism, and the Web service architecture as the preliminary backgrounds of
DEVSCluster-WS.

2.1 DEVS Formalism

The DEVS formalism is a sound formal modeling and simulation (M&S) frame-
work based on generic dynamic systems concepts [3]. DEVS is a mathematical
formalism with well-defined concepts of hierarchical and modular model con-
struction, coupling of components, and an object oriented substrate supporting
repository reuse. Within the formalism, one must specify (1) the basic models
from which larger ones are built, and (2) the way in which these models are
connected together in a hierarchical fashion. Top down design resulting in hier-
archically constructed models is the basic methodology in constructing models
compatible with the multifaceted modeling approach.

A basic model, called the atomic model (or atomic DEVS), specifies the dy-
namics of the system to be simulated. As with modular specifications in general,
we must view the above atomic DEVS model as possessing input and output
ports through which all interactions with the external world are mediated. To
be more specific, when external input events arrive from another model and are
received on its input ports, the model decides how to respond to them by its
external transition function. In addition, when no external events arrive until
the schedule time, which is specified by the time advance function, the model
changes its state by the internal transition function and reveals itself as exter-
nal output events on the output ports to be transmitted to other models. For
the schedule time notice, an internal event (*) is devised as shown in the above
definition.

Several atomic models may be coupled in the DEVS formalism to form a
multi-component model, also called a coupled model. In addition, closed under
coupling, a coupled model can be represented as an equivalent atomic model.
Thus, a coupled model can itself be employed as a component in a larger coupled
model, thereby giving rise to the construction of complex models in a hierarchical
fashion.

Detailed descriptions for the definition of the atomic and coupled DEVS can
be found in [3].

A Web Services-Based Distributed Simulation Architecture 373

Fig. 1. Non-hierarchical simulation mechanism for DEVS models.

2.2 DEVSCluster: Non-hierarchical Distributed Simulation Scheme
of DEVS Models

DEVSCluster is a non-hierarchical distributed simulation architecture for DEVS
models [6]. The basic motivation of DEVSCluster is, as shown in Fig. 1, to
transform hierarchically structured DEVS models into a non-hierarchical one
before the simulation execution. Based on the flat structured DEVS models,
The distributed version of DEVSCluster partitions the models for mapping into
the distributed machines, in which simulation engines synchronize each other by
Time Warp.

For detailed description of DEVSCluster, refer to [6].

2.3 The Web Service Technology

Web services are self-contained, loosely coupled software components that define
and use Internet protocols to describe, publish, discover, and invoke each other
[10, 11]. They can dynamically locate and interact with other web services on
the Internet to build complex machine-to-machine programmatic services. These
services can be advertised and discovered using directories and registries such as
the Universal Description, Discovery, and Integration (UDDI) specification [12].

To be useful, each discovered component must be described in a well-struc-
tured manner. The Web Services Description Language (WSDL) provides this
capability. Using WSDL, an invoking entity can bind to the selected service and
start communicating with its externally visible functions via advertised protocols
such as SOAP.

SOAP is a simple, lightweight protocol for the exchange of XML based mes-
sages between distributed entities. It supports detailed error reporting, applica-
tion specific XML encodings and is presently transferred over HTTP or SMTP.
The integral part of SOAP is the envelope root element, which consists of two
blocks of XML data called header and body. While the optional header is used
for transferring supplementary information, the body actually contains the main
part of XML data – in case of a SOAP-based remote procedure call (SOAP-
RPC), parameters and name of the called function.

374 Ki-Hyung Kim and Won-Seok Kang

Fig. 2. Block diagram of DEVSCluster-WS.

3 DEVSCluster-WS

In this section, the architecture of the proposed web-services-based distributed
simulation architecture, named as DEVSCluster-WS, is presented. Fig. 2 shows
the block diagram of DEVSCluster-WS. For inter node communication between
distributed models, DEVSCluster-WS utilizes the web services technology, such
as SOAP and WSDL, as an underlying distributed object technology. This
makes DEVSCluster-WS an adequate simulation engine for heterogeneous net-
work computing environment like Grid [13]. In the figure, output messages are
processed in a multi-threaded manner by output threads. Notice that the ex-
ternal input messages are also processed in a multi-threaded manner. This is
for avoiding a possible deadlock condition as shown in Fig. 3. Fig. 3 (a) shows
the possible deadlock condition when processing external input messages from
other nodes. The entire simulators in a node are protected by a global lock in a
node, and two entities – a local scheduler for internal event generation and the
ATL servants [14] for external message processing – share the critical section.
The follow is a possible scenario of deadlock condition; a simulation object in
Node1, which is now holding a lock of Node1, is now generating output events
which should be processed by the ATL servant of Node2 after acquiring the lock
of Node2; the same action happens in Node2 by the chance; thus a deadlock
happens.

Fig. 3 (b) shows the solution for deadlock avoidance employed by DEVS-
Cluster-WS. It employs the multi-apartment model [14] for multi-threading the
execution of external input messages.

The following shows the WSDL codes for DEVSCluster-WS. Through this
standard interface description, DEVSCluster-WS can be published in a stan-
dardized way.

A Web Services-Based Distributed Simulation Architecture 375

WSDL Description for DEVSCluster-WS

........................

<message name=’WebServiceDEVSImp.SendToXMesgThread’>

<part name=’src’ type=’xsd:int’/>

<part name=’time’ type=’xsd:double’/>

<part name=’dst’ type=’xsd:int’/>

<part name=’tN’ type=’xsd:double’/>

<part name=’simcount’ type=’xsd:int’/>

<part name=’priority’ type=’xsd:int’/>

<part name=’dupcount’ type=’xsd:int’/>

<part name=’type’ type=’xsd:int’/>

<part name=’sign’ type=’xsd:int’/>

<part name=’mesgid’ type=’xsd:int’/>

<part name=’func’ type=’xsd:int’/>

<part name=’buf’ type=’xsd:string’/>

</message>

<message name=’WebServiceDEVSImp.SendToXMesgThreadResponse’>

</message>

<message name=’WebServiceDEVSImp.Cal_Lvt’>

<part name=’lvt’ type=’xsd:double’/>

</message>

<message name=’WebServiceDEVSImp.Cal_LvtResponse’>

<part name=’Result’ type=’xsd:double’/>

</message>

<message name=’WebServiceDEVSImp.SetGVT’>

<part name=’gvt’ type=’xsd:double’/>

</message>

<message name=’WebServiceDEVSImp.SetGVTResponse’>

</message>

.............................

<operation name=’SendToXMesgThreadSeq’

parameterOrder=’src time dst tN simcount priority

dupcount type sign mesgid func buf’>

<input message=’wsdlns:WebServiceDEVSImp.SendToXMesgThread’/>

<output message=’wsdlns:WebServiceDEVSImp.SendToXMesgThreadResponse’/>

</operation>

<operation name=’Cal_Lvt’ parameterOrder=’lvt’>

<input message=’wsdlns:WebServiceDEVSImp.Cal_Lvt’/>

<output message=’wsdlns:WebServiceDEVSImp.Cal_LvtResponse’/>

</operation>

<operation name=’SetGVT’ parameterOrder=’gvt’>

<input message=’wsdlns:WebServiceDEVSImp.SetGVT’/>

<output message=’wsdlns:WebServiceDEVSImp.SetGVTResponse’/>

</operation>

..........................

4 Experimental Results

To show the effectiveness of DEVSCluster-WS, we have conducted a benchmark
simulation for a large-scale logistics system.

The automatic logistics system becomes more important as the size of the
system becomes large and complex. For the help of the decision-making, simula-

376 Ki-Hyung Kim and Won-Seok Kang

Fig. 3. Deadlock prevention mechanism for DEVSCluster-WS.

tion techniques can be used usefully. However, even in the normal sized logistics
system, one of the important problems to be tackled is the excessive simulation
execution time and the requirement of the large memory. In this case, distributed
simulation can help the problem. Fig. 4 shows the basic structure of the logistics
system model. In the logistics system, warehouses, stores, and control centers are
located over wide areas: stores spend products, warehouses supply the products,
and control centers control the logistics cars to chain the stores and warehouses.
In this system, the objective is to minimize the number of the required cars while
satisfying the orders of all stores. To find a shortest path between warehouses
and stores is basically a traveling salesperson problem. We utilized the genetic
algorithm for this problem. Also we abstracted the loading of products on cars
as a bin packing problem and used the best-fit algorithm for this problem.

EF

W1

W2

DIST1
OUTDIST

S1

S2

DIST2

TRANSD GENR

WARE CONNECT STORE

EF

W1

W2

DIST1
OUTDIST

S1

S2

DIST2

TRANSD GENR

WARE CONNECT STORE

Fig. 4. Basic structure of the logistics system model.

A Web Services-Based Distributed Simulation Architecture 377

We have conducted simulation experiments for the automatic logistics system
using DEVSCluster-WS and DEVSCluster-MPI, the MPI-based implementation
of DEVSCluster [6]. The configuration of the simulation platform is four Pen-
tium IV-based Windows 2000 systems connected by the 100 Mbps Ethernet. We
implemented the simulation system by Visual C++ 6.0 with SOAPToolkit3.0
[15] and the GUI by JAVA.

For the test of the scalability of DEVSCluster-WS, we conducted the sim-
ulation while changing the number of nodes. Fig. 5 shows the result. For 2
and 4 nodes, we compared two different versions of DEVSCluster-WS with
DEVSCluster-MPI, the MPI-based implementation of DEVSCluster. We tested
a threaded version of DEVSCluster-WS which multi-threads the processing of
output messages and a non-threaded version of DEVSCluster-WS. This is to
evaluate the effectiveness of the multi-threading for output messages process-
ing especially in the slow SOAP-based inter-node communication environment.
The results show that the performance of DEVSCluster-WS could be tolera-
ble compared to efficient DEVSCluster-MPI. Especially the multi-threading of
output message processing could reduce the overhead of SOAP processing in
DEVSCluster-WS due to the buffering effect of multi-threading, as shown in the
Fig. 5 and 6.

Fig. 7 shows the number of rollbacks and GVT (Global Virtual Time) compu-
tation time for 4 nodes configuration. The rollback result shows that the number
of rollbacks is already in the order of four hundreds and does not critically affect
the simulation run time. The GVT computation time is increased compared to
DEVSCluster-MPI, and the multi-threading of output messages can reduce this
overhead considerably.

5 Conclusion

In this paper, we proposed a web-services-based distributed simulation archi-
tecture for the DEVS models, named as DEVSCluster-WS. DEVSCluster-WS,
an enhanced version of DEVSCluster by employing the web services technol-

Fig. 5. Simulation execution time com-
parison of different schemes.

Fig. 6. Message sending and receiving
time for different schemes.

378 Ki-Hyung Kim and Won-Seok Kang

Fig. 7. Number of rollbacks and GVT computation time for different schemes.

ogy, thereby retaining the advantages of the non-hierarchical distributed simu-
lation compared to the previous hierarchical distributed simulations. Due to the
standardized nature of the web service technology, DEVSCluster-WS can effec-
tively be embedded in the Internet without adhering to the specific vendors and
languages. The performance result of DEVSCluster-WS showed that it works
correctly and could achieve tolerable performance.

References

1. K. Chandy and J. Misra, “Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs,” IEEE Trans. on Software Eng. vol. 5, no.
5, pp. 440–452, 1978.

2. R. Fujimoto, “Optimistic approaches to parallel discrete event simulation,” Trans-
actions of the Society for Computer Simulation International, vol. 7, no. 2, pp.
153–191, Oct. 1990.

3. B. Zeigler, H. Praehofer, and T. Kim, “Theory of Modeling and Simulation: In-
tegrating Discrete Event and Continuous Complex Dynamic Systems,” 2nd Ed.,
Academic Press, pp. 261–287, 2000.

4. A. Chow, “Parallel DEVS: A parallel, hierarchical, modular modeling framework
and its distributed simulator,” Transactions of the Society for Computer Simulation
International, vol. 13, no. 2, pp. 55–67, 1996.

5. K. Kim, Y. Seong, T. Kim, and K. Park, “Distributed Simulation of Hierarchical
DEVS Models: Hierarchical Scheduling Locally and Time Warp Globally,” Trans-
actions of the Society for Computer Simulation International, vol. 13. no. 3, pp.
135–154, 1996.

6. K. Kim and W. Kang, “CORBA-based, Multi-threaded Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-Hierarchical
One,” LNCS vol. 3046, pp. 167–176, 2004.

7. Object Management Group: The Common Object Request Broker: Architecture
and Specification, 2.2 ed., Feb. 1998.

8. K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the limits of SOAP
performance for scientific computing,” in the Proceedings of 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC-11), pp.
246–254, 23-26 July 2002.

A Web Services-Based Distributed Simulation Architecture 379

9. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface, http://www-unix.mcs.anl.gov/mpi, 1997.

10. M. Milenkovic, S. Robinson, R. Knauerhase, D. Barkai, S. Garg, A. Tewari, T. An-
derson, and M. Bowman, “Toward Internet distributed computing,” IEEE Com-
puter, vol. 36, no. 5, pp. 38–46, May 2003.

11. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
“Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI,”
IEEE Internet Computing, vol. 6, no. 2, pp. 86–93, March-April 2002.

12. UDDI, “Universal Description, Discovery and Integration,” http://www.uddi.org/.
13. I. Foster, and C. Kesselman, “Globus: A Toolkit-Based Grid Architecture,” In

The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, pp.
259–278, 1999.

14. “Specifying the Project’s Threading Model (ATL),” http://msdn.microsoft.com/.
15. “SOAP Toolkit,” http://msdn.microsoft.com/webservices/building/soaptk/.

Automated Cyber-attack Scenario Generation
Using the Symbolic Simulation

Jong-Keun Lee1, Min-Woo Lee2, Jang-Se Lee3,
Sung-Do Chi4, and Syng-Yup Ohn4

1 Cartronics R&D Center, Hyundai MOBIS, Korea
leejkmobis.co.kr

2 Cooperation of Sena, Korea
moment0msn.com

3 The Division of Information Technology Engineering,
Korea Maritime University, Korea

jsleebada.hhu.ac.kr
4 The Department of Computer Engineering,

Hangkong University, Korea
{sdchi,syohn}hau.ac.kr

Abstract. The major objective of this paper is to propose the auto-
mated cyber-attack scenario generation methodology based on the sym-
bolic simulation envi-ronment. Information Assurance is to assure the
reliability and availability of information by preventing from attack.
Cyber-attack simulation is one of no-ticeable methods for analyzing vul-
nerabilities in the information assurance field, which requires variety of
attack scenarios. To do this, we have adopted the symbolic simulation
that has extended a conventional numeric simulation. This study can 1)
not only generate conventional cyber-attack scenarios but 2) gen-erate
cyber-attack scenarios still unknown, and 3) be applied to establish the
appropriate defense strategies by analyzing generated cyber-attack. Sim-
ulation test performed on sample network system will illustrate our tech-
niques.

1 Introduction

As we increasingly rely on information infrastructures to support critical op-
erations in defense, banking, telecommunication, transportation, electric power
and many other systems, cyber-attacks have become a significant threat to our
society with potentially severe consequences [1,2]. Information Assurance is to
assure the reliability and availability of information by preventing information
and technology that consist, operate and control Information Infrastructure from
attack. One of the efforts for in-formation assurance is to set up the standard
metrics for design, operation and test, and to develop the proper model and the
tool with which information assurance test can be conducted. [3,4]. That is, the
deep understanding of system operation and at-tack mechanisms is the founda-
tion of designing and evaluating information assurance activities [2]. Therefore,

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 380–389, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automated Cyber-attack Scenario Generation 381

the advanced modeling and simulation methodology is essential for classifying
threats, specifying attack mechanisms, verifying protective mecha-nisms, and
evaluating their consequences. Such a methodology may be able to support to
find unknown attack behavior if more refined models are allowed.

It is true that Cohen [5], Amoroso [6], Wadlow [7], and Nong Ye [2] have done
pioneering work on this field, nonetheless, their studies remain in the conceptual
modeling rather than specific simulation trial. Recently, Chi et al [8,9] suggested
network security modeling and cyber-attack simulation methodology and devel-
oped the SECUSIM that realized the methodology. However, SECUSIM have
limits that can only simulate pre-defined cyber-attack scenarios.

In the mean time, if it is possible to predict unknown attack scenarios by
adopting the preciseness of modeling and reasoning methodology by using simu-
lation, the effectiveness of simulation is expected to be maximized. To deal with
this, we have adopted the symbolic DEVS that has extended a conventional
numeric simulation. This study can 1) not only generate conventional cyber-
attack scenarios but 2) gener-ate cyber-attack scenarios still unknown, and 3)
be applied to establish the appropriate defense strategies by analyzing generated
cyber-attack.

2 Brief Descriptions on Symbolic DEVS

Symbolic DEVS, extended Discrete Event System Specification (DEVS) [10,11],
expresses discrete event system occurred at symbolic time [12]. The main purpose
of symbolic simulation is to track the abnormal actions that may happen between
various models rather than acquiring statistic data from conventional simulation.
By express-ing the time of event in symbols, symbolic DEVS generates serial
trees that show every possible state trajectory reaching special state. This tree
can be effectively used to chase the cause of abnormal symptoms (i.e., goal)
perceived [11]. That is to say, symbolic DEVS enables symbolic expression of
event time by expanding real number for time function of conventional DEVS
into linear polynomials [11,12,13,14]. Basically, symbolic DEVS is defined as
follows:

M =< X, S, Y, δint, δext, λ, ta > (1)

Where X is the set of external (input) event types; S is the sequential state set;
Y is the output set; δint : S ×LP + 0,∞→ S is the internal transition function
where the LP + 0,∞ is the vector space of linear polynomials over non-negative
reals with ∞ adjoined; δext : Q × S → S is the external transition function
where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}; λ : S → Y is the output function;
and ta : S → 2LP + 0,∞ is the time ad-vance function where ta(s) is a finite,
non-empty set of linear polynomials [11,13].

The example of unknown attack scenario using symbolic DEVS is shown in
Fig. 1. Fig. 1(a) shows the simple state transition diagram of target host, in here,
let’s say that state transition of solid lines represents known attack, and state
transition of dotted line represents unknown attack. So, in this case, known at-
tack scenarios are {i1, i4} and {i2, i3, i4}. Meanwhile, unknown scenarios {i2, i5}

382 Jong-Keun Lee et al.

Fig. 1. Symbolic DEVS Example.

can be found by using symbolic simulation analysis. That means, in state S0 it
can take one of two external input events i1 and i2 which are scheduled to be
arrived at symbolic time ti1 and ti2, respectively. The external transition cor-
responding to ti1 is S0 → S1; that corresponding to ti2 is S0 → S2. That is to
say, symbolic time set, ti1 and ti2 are related to non-deterministic timing, ac-
cordingly, by symbolic simulation, simulation trajectory tree shown in Fig. 1(b)
is automatically generated so that relationship between every possible state and
input can be analyzed effectively.

3 Cyber-attack Scenario Generation Methodology
Using the Symbolic DEVS Simulation

Automated cyber-attack generation by symbolic simulation, with which this re-
search is approaching, is achieved by the layered methodology shown in Fig. 2.
Here, cyber-attack scenario is defined as command set that transit normal state
of victim host to attacked state. First phase is to clearly specify the state of
target objective and initial constraints based on information of target network.
By defining the goal state to find through simulation in advance, it is possible
to reduce simulation scope and to easily analyze the result of simulation. Also,
searching space of symbolic simulation can be reduced effectively by reflecting
pre-knowledge such as structural constraint of target network and constraints
between the states. Second phase is to search or generate the data and models
that were already constructed to library or to be constructed, which can be com-
posed of network components like host, attacker’s database and symbolic model.
By integrating these data and symbolic models, final simulation model in 3rd
phase is generated so that simulation proceeds. Symbolic simulation in 4th phase
is commenced by start messages input to simulation model. By transferring next
components as per coupling and timing relation along with next component, all
possible activities are examined up until reaching goal. When non-deterministic
timing relation appears, simulation engine automatically generates simulation
tree that shows all possible activities [12]. This tree contains all possible attack

Automated Cyber-attack Scenario Generation 383

Fig. 2. Automated Cyber Attack Scenario Generation Methodology.

scenarios, and array of the attacks that satisfy goal among them results in table
shown in phase 5. This table includes all attack procedures that may success-
fully attack the target system. What it means is that both known and unknown
attack can be found in the process of these attack scenario analysis.

4 Case Study

Simulation test was taken place to examine the validity of suggested methodol-
ogy. To simplify the test, sample network composed of attacker and victim host
omitting net-work between models was assumed as shown in Fig. 3.

4.1 Phase I: Objectives and Constraints

In order to generate the cyber-attack scenario during symbolic simulation, sim-
ulation goal is set to let the victim host reach COOLDOWN. COOLDOWN

384 Jong-Keun Lee et al.

Fig. 3. Sample Network.

mentioned here is one of the 4 steps (COLD, WARM, HOT, and COOLDOWN)
Wadlow [7] suggested, it refers the step to conduct destroying activities after
successful attack (HOT) (also see Fig. 5). And, the commands that attacker has
was limited to 6 general command groups and 1 command group for confirming:

Group1: Local host command group: command group that gives command to
local host. Commands to access victim host are included.

Group2: Telnet command group: it is composed of commands to use telnet ser-
vice provided from victim host. Setup change and access to other ser-
vices are possible by this.

Group3: FTP command group on telnet: it is composed of commands that can
be used when ftp session is open by telnet command.

Group4: Authorization command group: it is composed of responses related with
ID & password authorization.

Group5: FTP command group: it is composed of commands that can be used
when ftp service is open

Group6: COOLDOWN command group: it is composed of commands group that
actually can give damage to victim host.

Group7: Check command group: it is composed of commands group that can
check the change of victim host condition upon above command groups.

4.2 Phase II: Symbolic Model Construction

Symbolic DEVS model is constructed in this phase. First, Fig. 4 shows the
structure of attacker model. As shown in Fig. 4, attacker model is composed
of various command models having symbolic time, and each command models
are activated upon the response from victim host. Activated command models
generate the various commands along with non-deterministic timing value, and
generated commands are transferred to victim host. As such, attacker gener-
ates various attack scenarios automatically. Symbolic DEVS representation of
command model consisting attacker model is summarized as follows:

State Variables
’passive, ’active, ’generating

External Transition Function
If packet(response) comes from Victim Host and state is ’passive,
Then hold in ’active during ’symbolic-time
Else If ’stop comes from other command model and state is ’active,
Then hold in ’passive during ’INF

Internal Transition Function
If state is ’active,Then hold in ’generating during 0
Else If state is ’generating,Then hold in ’passive during ’INF

Automated Cyber-attack Scenario Generation 385

Fig. 4. Attacker model structure.

Output Function
If state is ’active, Then send ’stop to other command models
Else If state is ’generating,
Then sent packet(command) to Victim Host

State of victim host model [8,9], which receives command from attacker,
is defined based on resources of host such as service-type and O/S-type, and
it causes various state transitions along with input command. Through these
serial state transitions, sometimes, it reaches goal state (i.e., attacked state),
accordingly, the set of command changing model’s state from initial state to
goal state can be defined as attack scenario. Simplified DEVS representation of
victim host is summarized as follows:
State Variables

’passive, ’busy, Service-type, H/W-type, O/S-type,
Registered-user-list, User-size, etc.

External Transition Function
If packet(command) comes from Attacker and state is ’passive,
Then change the state variables by executing command

and hold in ’busy during ’processing-time
Internal Transition Function

If state is ’busy, Then hold in ’passive during ’INF
Output Function

If state is ’busy, Then send packet(response) to Attacker

4.3 Phase III: Symbolic DEVS Simulation

Symbolic simulation proceeds as per timing relation between attacker and victim
host as explained above. Table 1 shows a part of simulation log file. In table 1,
‘node’ means each condition that may occur by symbolic timing relation, ‘chil-
dren’ means next state that may be converted from current state. ‘Clock-time’
means symbolic time converted into current state, ‘imminent’ shows the selected
command among non-deterministic commands. ‘Constraints’ mean time restric-
tion resulted from command selection, ‘goal’ and ‘dead-end’ shows that whether
present node satisfies goal or it is leaf node. For instance, NODE1 is a leaf
node and it is no children, and when tc1 mount satisfies the smallest restriction,
it generates mount command by MOUNT model being activated in tc1 mount

time. Finally, NODE411 is a leaf node that satisfies goal and tc15 killall1 has the
smallest restriction condition.

386 Jong-Keun Lee et al.

Table 1. Simulation trajectory (partially-shown).

4.4 Phase IV: Tree Generation

Trajectory tree resulted from symbolic simulation is shown in Fig. 5. Trajectory
tree is divided into 4 phases suggested by Wadlow in accordance with degree
of attack procedure. In this figure, “◦” means normal node, and “•” means leaf
node (dead-end). And, “*” marked on leaf shows trajectory that satisfies the goal
condition (to have victim host in COOLDOWN condition), bold line presents
simulation trajectory that serial attacks have been succeeded. One of trajectory
that reached the goal condition in Fig. 5 explains as follows (See the scenario in
Table 2):
(1) : mount, echo1, su, mkdir, echo2, cd, and rlogin are the command that is
valid in the currnet victim host condition, each command is selected by symbolic
time of each command model. In this case, symbolic time of MKDIR model is
the shortest, so mkdir command is selected.
(2)–(3), (5)–(6), (8), (10)–(12), (14) : the host condition is changed by executing
the selected serial commands, and the next command is selected as per the
symbolic time relation of command models that is valid after change of condition.
(4) : this is the case where symbolic time of SU model is the smallest. su com-
mand is selected and phase of attack process on victim host becomes WARM by
executing su command.
(7) : rlogin is selected as the only command that can be executed in the current
host condition.

Automated Cyber-attack Scenario Generation 387

Fig. 5. Generated Simulation Trajectories Tree (obtained from Table 1).

(9) : ftp is selected as the only command that can be executed in the current
host condition, and phase of attack process on victim host becomes HOT by
executing ftp command.
(13) : mget is selected as the case that symbolic time of MGET model is smaller
than that of QUIT model, and phase of attack process on victim host becomes
COOLDOWN by executing mget command.
(15) : killall1 is selected as the case that symbolic time of KILLALL1 model is
the smallest, and it reaches goal by executing killall1 command.

4.5 Phase V: Attack Scenario Generation

The discovery of new attack scenario is done by analysis of the trajectory tree
of Phase IV explained above. Table 2 shows the example of attack scenario
obtained from simulation trajectory tree. In this case study, it was confirmed

388 Jong-Keun Lee et al.

Table 2. Generated Cyber Attack Scenarios.

Command Descriptions

mkdir /tmp/mount Make directory in the local host

mount -nt nfs 172.16.112.20 Mount directory
: home /tmp/mount

echo ’lemin:102:2::/tmp/mount: Command of changing
/bin/csh’ >> /etc/passwd the environment to write data to file

su -lemin Make lemin user

echo ’+ +’ > lemin/.rhosts Command of changing
the environment to write data to file

cd / Generate the .rhosts file

rlogin 172.16.112.20 rlogin

Echo “id > /tmp/OUT” > “|sh” Command of changing
the environment to write data to file

ftp localhost Open ftp session

lemin Right user id reply

right-pass Right password reply

cd / Change directory

mget * Command of mget

vi inetd.conf Change the configuration

killall inetd Restart inetd

that ftp vulnerabilities of system was found and cyber-attack scenario using
this was generated, even though the defense of victim host was assumed to be
perfect. As such, a unknown cyber-attack scenario can be found by expressing
victim host more precisely accord-ing to suggested methodology and defining
command set specifically, accordingly.

5 Conclusions

The objective of this paper is to suggest methodology of automated cyber-attack
scenario generation that is indispensable in the cyber-attack simulation for in-
formation assurance. In order to do this, we defined cyber-attack scenario as
command set that transit normal state of victim host to attacked state and
modeled the attacker that generates various cyber-attack scenario with all the
possible combination of command by adopting the symbolic DEVS. This study
can 1) not only generate conventional cyber-attack scenarios but 2) generate
cyber-attack scenarios still unknown, and 3) be applied to establish the appro-
priate corresponding strategies by analyzing generated cyber-attack.

Acknowledgements

This research was supported by IRC(Internet Information Retrieval Research
Center) in Hankuk Aviation University. IRC is a Kyounggi-Province Regional
Research Center designated by Korea Science and Engineering Foundation and
Ministry of Science & Technology.

Automated Cyber-attack Scenario Generation 389

References

1. T. A. Longstaff et al: Are We Forgetting the Risks of Information Technology,
IEEE Computer, pp 43-51, December, 2000

2. Nong Ye and J. Giordano: CACS - A Process Control Approach to Cyber Attack
Detection, Communications of the ACM., 1998

3. DoD: Defensive Information Operations, Technical Report #6510.01B, June 1997.
4. A. Jones: The challenge of building survivable information-intensive systems, IEEE

Computer, August, pp. 39-43, 2000.
5. Cohen, F.: Simulating Cyber Attacks, Defenses, and Consequences, 1999 IEEE

Symposium on Security and Privacy Special 20th Anniversary Program, The Clare-
mont Resort Berkeley, California, May 9-12, 1999.

6. Amoroso, E.: Intrusion Detection, AT&T Laboratory, Intrusion Net Books, Jan-
uary, 1999.

7. Wadlow T. A.: The Process of Network Security, Addison-Wesley, 2000.
8. S.D. Chi et al, “Network Security Modeling and Cyber-attack Simulation Method-

ology”, Lecture Notes on Computer Science series, 6th Australian Conf. on Infor-
mation Security and Privacy, Sydney, July, 2001.

9. J.S. Park et al, “SECUSIM: A Tool for the Cyber-Attack Simulation”, Lecture
Notes on Computer Science Series, ICICS 2001 Third International Conference on
Information and communications Security Xian, China, 13-16 November, 2001.

10. Zeigler, B.P.: Object-oriented Simulation with Hierarchical, Modular Models: In-
telligent Agents and Endomorphic Systems, Academic Press, 1990.

11. Zeigler, B.P., H. Praehofer, and T.G. Kim: Theory of Modeling and Simulation
2ed., Academic Press, 1999.

12. S.D. Chi: Model-Based Reasoning Methodology Using the Symbolic DEVS Sim-
ulation, TRANSACTIONS of the Society for Computer Simulation International,
Vol. 14, No. 3, pp.141-151, 1996.

13. Zeigler, B.P. and S.D. Chi: Symbolic Discrete Event System Specification, IEEE
Trans. on System, Man, and Cybernetics, Vol. 22, No. 6, pp.1428-1443, Nov/Dec.,
1992.

14. S.D. Chi, J.O. Lee, Y.K. Kim: Using the SES/MB Framework to Analyze Traffic
Flow, Trans. of Computer Simulation International, Vol. 14, No. 4, December,
1997.

A Discrete Event Simulation Study
for Incoming Call Centers

of a Telecommunication Service Company

Yun Bae Kim, Heesang Lee, and Hoo-Gon Choi

Sungkyunkwan University, Suwon, Korea
leehee@skku.edu

Abstract. Call center becomes an important contact point, and an in-
tegral part of the majority of corporations. Managing a call center is a
diverse challenge due to many complex factors. Improving performance
of call centers is critical and valuable for providing better service. In
this study we applied forecasting techniques to estimate incoming calls
for a couple of call centers of a mobile telecommunication company. We
also developed a simulation model to enhance performance of the call
centers. The simulation study shows reduction in managing costs, and
better customer’s satisfaction with the call centers.

1 Introduction

Over the past few years, more and more corporations have become aware of the
importance of call centers. Call centers can be used by tele-marketers, collec-
tion agencies and fund raising organizations to make contact with customers by
phones. In this type of call centers, outgoing calls from the call center are more
frequent than incoming calls. Call centers can also be designed and operated
to offer after-sales service, software support, or customer inquiry by processing
mainly incoming calls.

A typical call center has complex interactions between several “resources”and
“entities”. Telecommunication trunk lines, private business exchanges (PBX),
and agents who call up or answer the customer’s calls are the main resources of a
call center. The voice response units (VRU), which can replace the human agents
for some part of calls or some of calls. Automatic call distributors (ACD) are also
standard digital solutions in a PBX, or in a separate system. Entities take the
form of calls in a call center. Hence the incoming or outgoing calls navigate call
centers and telecommunication networks. In the call centers the calls occupy or
share the call center’s resources. Hence the objective of call center management
is to achieve a high service level for customers and use resources efficiently. The
complexity of the management and analysis of a call center depends on several
factors such as call types and waiting principles. Call entities that have several
types make the analysis difficult. When a call entity is accepted at a call center,
and the resources are fully used, the arriving call may be simply lost or hold1 in
1 This waiting system is theoretically more difficult to analyze than the loss system.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 390–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Discrete Event Simulation Study for Incoming Call Centers 391

an electronic queueing system. A call may also abandon the system during the
waiting2.

To provide enhanced response to the customers and increase customer sat-
isfaction, corporations are providing many resources for call center operations.
The design and management of the efficient call center is becoming more com-
plicated due to many factors, such as the fast growing demanding of customer
expectations, new computer-telephone integration (CTI) technologies, diverse
call routing strategies, and some staffing restrictions.

In this paper we study a nation wide mobile telecommunication company’s
call center in Korea that has incoming calls as the major entities. The company
has about 10 million subscribers and up to 4 million incoming calls to the call
centers per month. We focus our research to answer the following questions:
“How the call center can be effectively simulated? How can we help the decision
makers to make the call center operations efficient?”

The remainder of this paper is organized as follows. In Sect. 2, we present
some related research works for the management of call centers. In Sect. 3,
we analyze the operation policies and information system resources of the call
center. In Sect. 4, we studied the incoming calls for the call center, and used
forecasting methods to predict and formulate the entities of the call center. In
Sect. 5, we make a discrete event simulation model for the call center. We verify
the simulation model with the actual call center. We also suggest some optimal
operational strategies for the call center, such as the overflow decision and the
agency scheduling. In Sect. 6, we give some concluding remarks and discuss
further research topics.

2 Previous Research for Call Center Operations

The most important management decision problem for call center operation is
decision about staffing the agents and trunking capacity dimensioning. Analytic
models based on Erlang formulas that were designed in 1917 for the queueing
system can still be used [1]. However the Erlang based method has too narrow
assumptions for today’s call center, such as: 1) every call has the same type. 2) a
call in a queue never abandons. 3) every call is served by first in first out (FIFO)
basis. 4) every agent has the same ability. Many spreadsheet solutions are used
for staff scheduling or trunking capacity dimensioning decisions. These methods
are based on more realistic assumptions than Erlang models. Software solutions,
which are based on spreadsheet or heuristic algorithms, for agent scheduling
or dimensioning of the call centers are called Work Force Management (WFM)
solutions in the world of call center business.

Many works in operations research have been conducted for the problems
related with optimal agent scheduling [2] and references therein. However, these
methods have very strong assumptions for randomness and types of entities and
resources. [2] presented a deterministic algorithm for the daily agent scheduling
problem using dynamic programming and integer programming. They applied
2 The abandoning of calls make the system more realistic but more difficult to analyze.

392 Yun Bae Kim, Heesang Lee, and Hoo-Gon Choi

the algorithm for an emergency call center involving up to several hundred agents
and six months. [3] studied a deterministic shift scheduling problem for call cen-
ters with an overall service level objective. This problem has a strong assumption
that all shifts of agents have the same length without breaks. They showed that
with this restriction, a local search algorithm is guaranteed to give a global
optimal solution for a well-chosen finite (but very large) neighborhood.

With simple assumptions some stochastic analysis have been reported. [4]
studied a stochastic capacity sizing problem of an inbound call center which has
a common resource and dedicated servers. For a simpler form, the loss system,
where the callers do not wait for service, they suggested an algorithm that can
find an optimal capacity. [5] presented a study about an incoming call center
that has agents trained to answer different classes of calls. They presented a
closed form approximation of the loss probability with a simplifying assumption
of the loss system.

There are some discrete event simulation approaches about operations of call
centers of telecommunication service companies. [6] discussed how simulation
had added value as a decision support tool for the call centers, during a re-
engineering initiatives at AT&T. [7] reported that a discrete event simulation
study had used for some new problems of the call center of Bell Canada, such
as skill-based routing and interactive call handling. However, both studies of
AT&T and Bell Canada showed not detailed findings of the simulation works,
but some frameworks of the simulation study.

3 System Analysis of the Call Center

In this section we analyze a call center of a Korean mobile telecommunication
service company. The company has about ten million subscribed customers for
mobile voice calls and wireless internet access. There are two call centers for
this company that usually operate incoming subscription-related services such
as subscription condition inquiry, service change, software upgrade, and cost rate
related services.

We analyzed the flow of the call entities and functional relationships of agents’
activities of the call centers of the company, and generated the following system
architecture diagram that is a representation of the operational processes of the
call centers of the company.

As we see in Fig. 1, the company has two call centers and has two predefined
types of customers. The first type of customers is the prestige class and the
second type is the ordinary class. The customer classification is based on the
customer’s business history that is stored in the CTI server. We also classify a
separate call class for quality inquiries without considering business history for
both classes. Hence, we have three classes of customers, 1) the prestige class
without a quality inquiry, 2) the ordinary class without a quality inquiry, and
3) the quality inquiry class.

Two call centers operate independently for the prestige customers or the
quality inquiries. However, for an ordinary customer without a quality inquiry,

A Discrete Event Simulation Study for Incoming Call Centers 393

Fig. 1. Process Flows of the Call Center.

when a call center uses full capacities of its resources, and the number of held
calls or waiting time of held calls are greater than the predesigned parameter,
the other call center can be inundated3. Any call that has waited in the call
center can abandon waiting for service4. Calls can also be transferred to other
types of classes after its own service has been rendered. The agent may need
some extra work for paper-works and related information processing after the
call connection. This process is called the “post-call process”.

In our study we surveyed the call center management and concluded that
the following data are important performance measures of the operations of the
call centers.

– Service Level
– Average Waiting Time
– Reneging Rate
– Resource Utilization

Note that these performance measures are interrelated. For example if we
try to decrease the average waiting time with fixed resources, we may get a
worse abandon rate since the pre-queued entities may hold fixed resources more
favorably. Using the above performance measure we can find the answers for
1) queueing strategies, 2) load balancing, 3) agent scheduling, and 4) process
redesign.
3 As we see in the upcoming section, the decision about how much we allow to overflow

is an important problem for an efficient management of the call center operations.
4 To avoid the overload of incoming calls, the ACD of the call center would abandon

a call automatically that experiences three minute waiting.

394 Yun Bae Kim, Heesang Lee, and Hoo-Gon Choi

4 Analysis of Incoming Calls

The arrival of calls is an input of the simulation model. For several months, data
regarding arrival rates of the incoming calls for one-day period are collected.
We found that the arrival patterns are very different among time periods of
a day, among days of a week, and among dates of a month. Fig. 2 shows the
arrival patterns of time periods for 15 days. We can see the patterns of Monday
through Friday are similar, but patterns of Saturday and Sunday are different
from those of other days. From these data we can derive non-homogenous random
distributions for 30 minutes period for each day.

Fig. 2. Arrival Patterns of Time Periods of the Call Center.

Fig. 3 represents incoming call patterns of days of a week for about two
months. We can see more incoming calls arrive in Monday and less incoming
calls in Saturday and Sunday. Hence, we built a 7 day moving average model
for incoming call patterns for the days of a week. The call patterns also changed
for the end of a month, and holidays. We also used these special day factor to
derive the input call distributions.

Service time data were collected from the CTI server of the call center. We
make six service time distributions using ARENA Input Analyzer [8], an input
distribution estimation software, for three service classes of two call centers.
Table 1 shows each of these distributions.

As we see in Table 1, the service time distributions for quality inquiries are
longer than those of other services. After answering a call one telecommunication
trunk line the connection with the CTI server are free, but an agent needs a post-
call process. Since CTI server does not have this time data for each call, we can
calculate only the mean value of post-call process time for each service class.
Hence we use constant time of the following mean values as in Table 2.

A Discrete Event Simulation Study for Incoming Call Centers 395

Fig. 3. Arrival Patterns of Time Periods of the Days of a Week.

Table 1. Service Time Distributions.

Center Group Distributions and Parameters Average (Seconds)

Center A Ordinary 4 + GAMMA(84.5, 1.78) 155
Center A Prestige 4 + ERLANG(78.7, 2.0) 161
Center A Quality Inquiry 4 + WEIBUL(195.0, 1.09) 191
Center B Ordinary 4 + GAMMA(74.8, 2.0) 154
Center B Prestige 4 + GAMMA(78.9, 2.06) 166
Center B Quality Inquiry 4 + GAMMA(146.0, 1.36) 202

Table 2. Constant Post-Call Process Times.

Center Group Average (Seconds)

Center A Ordinary 63.10
Center A Prestige 119.95
Center A Quality Inquiry 247.26
Center B Ordinary 52.33
Center B Prestige 98.88
Center B Quality Inquiry 218.15

We collected time data for the abandoned calls. As we see in Table 3, calls
of the ordinary group and the prestige group can have theoretical probability
distributions for abandon time, however for the quality inquiry calls, we should
use empirical distributions.

The final data is about transfer rate that is the ratio of transferring from a
service to another service. We collected time and ratio data for the transfer and
found that the calls from quality inquiry had high (about 10% - 12%) transfer
rates. We made random distributions from these data, and used them in the
simulation study.

396 Yun Bae Kim, Heesang Lee, and Hoo-Gon Choi

Table 3. Abandon Time Distributions.

Center Group Distributions and Parameters Average (Seconds)

Center A Ordinary 4 + LOGNORMAL(62.3, 65.1) 32.6
Center A Prestige 5 + GAMMA(25.8, 2.0) 56.7
Center A Quality Inquiry An Empirical Distribution 91.3
Center B Ordinary 4 + GAMMA(31.4, 1.81) 60.9
Center B Prestige 4 + GAMMA(32.8, 2.04) 70.9
Center B Quality Inquiry An Empirical Distribution 98.5

5 Simulation Model Building, Verifications,
and Optimal Call Center Operations

We developed a discrete event simulation model using the process logic which is
described in Fig. 1 and input distributions explained in sect. 4. The computer
simulation programming is coded by making a Visual Basic program, which
has a ProModel as a discrete event simulation engine. The user interface of the
developed program is represented in Fig. 4.

We tried to verify if the simulation model portrays the actual call center
correctly. We established the following simulation experimental procedure for
this verification.

– 1st step: Put a set of input data into the model for some specific time inter-
vals.

– 2nd step: Run a set of computer simulations, and get the output measures.
Get statistical confidence intervals from the output measures.

Fig. 4. User Interface of the Simulation Model.

A Discrete Event Simulation Study for Incoming Call Centers 397

– 3rd step: Compare the actual data, and the confidence intervals from the
simulation outputs.

– 4th step: For the significant mismatched data find the causes, and revise the
model.

In this verification procedure we learned the following lessons: 1) The recorded
data from the CTI servers and actual system operation had some discrepancies;
those mainly came from agent break flexibility5. We modified the input data for
only agents who kept their agent’s break schedules, 2) Abilities of the agents
are considerably different from each other. We modified the model that had two
classes of abilities of agents, 3) The assumption that post-call processing time
is constant seems to be incorrect. However, we can not correct the last problem
since more precise post-call processing time data , which can not be recorded in
the CTI, can not be collected in a limited project schedule.

After performing the verification procedure, we tried to obtain two optimal
management policies for the call centers. The first one is to decide the optimal
number of agents for each day. The current decision was made by a Work Force
Management Tool that was a spreadsheet based on simple heuristic for a given
day’s call volume forecasting. We already established input call distribution for
each day of the week, and each date of a month describe in sect. 4, we needed
to find the number of agents that can satisfied the major output performance,
the service level. Fig. 5 shows an instance of the optimal numbers of agents for
a call center for a given day and date.

The second decision problem for the call centers is about overflow rates be-
tween two call centers. Since there are two call centers in the company, we can
transfer some incoming calls for a call center to the other call center without

Fig. 5. Optimal Numbers of Agents.

5 The actual system can perform better than the simulation results since the agents
can stop their non-scheduled breaks, known as soft breaks, when the call center
becomes busy.

398 Yun Bae Kim, Heesang Lee, and Hoo-Gon Choi

Fig. 6. Optimal Transfer Rates between Call Centers.

increasing the number of the agents for a call center. We can find 10% as the
optimal transfer rate of each call center that can satisfy the the service level by
using batch runs of the simulation. Fig. 6 shows SimRunner [9], a software that
controls the batch runs of the simulation.

6 Conclusions

Call centers become business battle grounds where products and services are
purchased, sold, upgraded, and after-serviced. To manage the current complex
call centers efficiently, some simple solutions are no longer valid. In this paper,
we have shown that discrete simulation is a valid tool to describe and analyze
call centers of the corporations. We built a discrete simulation model for the call
centers of a large mobile telecommunication service company. We mainly focused
on the questions on how the call center can be effectively simulated, and how
can we help the decision makers for the efficient call center operations. We can
answer the optimal number of agents and optimal transfer rates between two
call centers to satisfy some output performances.

In this paper, we did not consider detailed management strategies for the call
centers: such as blending each group’s agents or process redesigns. One of the
further research topics can be the use of the models and results of this paper to
answer questions regarding the detailed management strategies, for call centers.

A Discrete Event Simulation Study for Incoming Call Centers 399

References

1. Vivek Bapat and Eddie B. Pruitte, Jr., Using Simulation in Call Centers, Proceed-
ings of the 1998 Winter Simulation Conference, pp. 1395-1399, 1998.

2. Alberto Capara, Micjele Monaci, and Paolo Toth, Models and algorithms for a staff
scheduling problem, Mathematical Programming, Ser. B 98: pp. 445-476, 2003.

3. Ger Koole and Erik Van Der Sluis, Optimal Shift Scheduling with a Global Service
Level Constraint, IIE Transactions, Vol. 35, pp. 1049-1055, 2003.

4. O. Zeynep Aksin, Patrick T. Harker., Capacity Sizing in the Presence of Common
Shared Resource: Dimensioning an Inbound Call Center, European Journal of Op-
erationals Research, Vol. 147, pp. 464-483, 2003.

5. Philippe Chevalier, Nathalie Tabordon, Overflow Analysis and Cross-trained
Servers, International Journal of Production Economics, Vol. 85, pp. 47-60, 2003.

6. Rupesh Chokshi, Decision Support for Call Center Management Using Simulation,
Proceedings of the 1999 Winter Simulation Conference, pp. 1634-1639, 1999.

7. Oryal Tanir and Richard J. Booth, Call Center Simulation in Bell Canada, Proceed-
ings of the 1999 Winter Simulation Conference, pp. 1640-1647, 1999.

8. W. Kelton, D. Randall, P. Sadowski, and Deborah Sadowski, “Simulation with
ARENA”, McGraw-Hill, 2002.

9. H. Biman Charles, K. G. Biman, and B. Royce, “Simulation Using ProModel”,
McGraw-Hill, 2001.

•
•
•
•

° °
° °

° °

° ° ± °
± °

±

° °

•
•
•
•
•

•

•

•

•

•
−
−

•
−
−

•
−
−

•
−
−

•

kjkim@dongguk.edu

hcahn@kaist.ac.kr

=

=

−=

α

−+= α

∈

−==

∈

=

α

System Properties of Action Theories

Norman Foo1 and Pavlos Peppas2

1 School of Computer Science and Engineering, University of New South Wales,
Sydney NSW 2052, Australia

norman@cse.unsw.edu.au
2 Dept of Business Administration, University of Patras, Patras, 26 500, Greece

ppeppas@otenet.gr

Abstract. Logic-based theories of action and automata-based systems theories
share concerns about state dynamics that are however not reflected by shared in-
sights. As an example of how to remedy this we examine a simple variety of
situation calculus theories from the viewpoint of system-theoretic properties to
reveal relationships between them. These provide insights into relationships be-
tween logic-based solution policies, and are suggestive of similar relationships
for more complex versions.

1 Introduction

Reasoning about action in AI has adopted various logical calculi as representational
languages, using classical first-order deduction with a variety of second-order rules or
model selection specifications. A parallel approach, which in fact pre-dates AI logics,
is systems theory. Systems theory unified ad hoc formalisms in different engineering
models of state change by changing the emphasis to systems-theoretic properties such
as causality, realizability and state space minimality. Automata theory was a species of
systems theory. The history of AI logics for reasoning about change has an uncanny
resemblance to that of engineering models. In this paper we begin a program to use the
insights of systems theory to unify diverse strands AI logics. Due to space restrictions a
number of such connections between systems theory and AI logics have been omitted,
but a working paper by the authors is available [Foo and Peppas 2004].

The situation and event calculi (see [Shanahan 1997] for contemporary accounts)
are perhaps the two most popular formalisms for representing dynamic domains in
logic. From the perspective of systems theory we will choose several properties which
are typical of transition systems and automata ([Arbib 1969a]). These properties are
used to classify models of situation calculi, and to examine relationships among them.
We focus on the simplest of situation calculi theories.

2 Situation Trees

To establish notation we first review the situation calculus and automata. The situation
calculus is a multi-sorted first-order theory which admits Herbrand models. The sorts
are: Sit (situations), Act (actions), Flu (fluents). There is a binary function Result :
Act × Sit → Sit, and a binary predicate Holds : Flu× Sit. Sit has a distinguished

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 416–427, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

System Properties of Action Theories 417

member s0, called the initial situation. The intuition is that Sit is constructed from
s0 as results of actions from Act, denoting the result of action a on situation s by
Result(a, s). Thus Sit is the Herband universe of this theory in which the constants
are s0 and the action names, and the constructing function is Result. The fluents are
intuitively the potentially observable properties of the situations, as it may be the case
that a theory may not specify completely the status of all fluents in all situations. Fluent
observation is via the Holds predicate, e.g.,¬Holds(f, Result(a2, (Result(a1, s0))))
says that the fluent f does not hold after the actions a1 and a2 are applied (in that order)
to the initial situation. A model of a situation calculus theory is a Herbrand model.
Different names for actions, fluents, and terms denote distinct entities. A contemporary
reference for more details is [Shanahan 1997]. A (Moore) automatonM is a quintuple
〈I, Q, Y, δ, λ〉 where I is the set of inputs, Y is the set of outputs, Q is the state set,
δ : Q× I → Q is the state transition function, and λ : Q → Y is the output function.
The state set can be infinite. As usual we can represent automata diagrammatically by
using labelled circles for states and labelled arcs for transitions. The labels in circles are
the outputs for the states, and the arcs are labelled with names of the inputs. Initially,
the automata we consider are loop-free i.e., there is no path of arcs that lead from one
state back to itself. This is to conform to the tree structure of the situations. For our
purpose, we will also posit an initial state q0 for the automaton. A standard reference is
[Arbib 1969a].

3 Motivating Example

Consider the set Δ of formulas:

Holds(f, s0) ∧Holds(g, s0) (1)

¬Holds(f, Result(a, s))← Holds(f, s) ∧Holds(g, s) (2)

Holds(g, Result(b, s))← Holds(f, s) ∧Holds(g, s) (3)

This is a simple example of an action specification using the situation calculus.
Here Flu = {f, g} and Act = {a, b}. We adopt the diagrammatic convention that
Holds(¬f, s) if and only if ¬Holds(f, s). Here we examine but one way to use the
specification – prediction – i.e., given the initial situation as above, what can one say
about the status of the fluents after the performance of a sequence of actions such as
b, a, b? For this example, it is evident that the predictions depend on observation ax-
iom 1 which says what fluents hold in the initial situation s0. More generally, such
observations can refer to “deeper” situations away from the initial.

Definition 1. An observation term of depth k is a ground situation term of the form
Result(ak, Result(ak−1, (. . . Result(a1, s0) . . .))). An observation sentence of depth
k is one in which the only atoms are of the form Holds(F, S) where S is an observation
term, and the maximal depth of such terms is at most k.

It is convenient to define the depth of non-observation terms to be 0, so axioms 2
and 3 are of depth 0.

418 Norman Foo and Pavlos Peppas

f
g

-f
g

ab

abab

s0

s3 s4 s5 s6

s1 s2 {= Result(a,s0)}

Fig. 1. Minimal information situation tree of Th(Δ).

Definition 2. An action specification is predictively-free if all its observation sentences
are of depth 0, i.e. only about the initial situation.

As most specifications are incomplete (for good reason), we may in principle com-
plete them in any consistent manner. Figure 1 is a diagram that displays a fragment
of Th(Δ), the deductive closure of Δ. It can be interpreted as a partial automaton, in
which we have identified (in the notation above) Sit with the state set Q, Act with the
input set I , the Result function with the state transition function δ, Flu with the output
set Y and the Holds predicate with the output function λ. This diagram sets down the
minimal consequences of Δ, so that a fluent (output) F (respectively ¬F) appears in a
situation (state) S if and only if Δ |= Holds(F, S) (respectively Δ |= ¬Holds(F, S)).
The automaton is partial in two senses: (i) it is incomplete for outputs as just explained;
(ii) it only suggests that there are situations (states) beyond two actions by means of
ellipses. Therefore, completing them amounts to completing both the outputs and ex-
tending the depth of the tree ad infinitum. We will initially focus on the former means
of completion.

The “filling-in” of the situations in figure 1 is in general constrained by observation
formulas. For instance, if it were the case that ¬Holds(g, Result(a, s0)) was included
in Δ we would be forced to add fluent g to the circle for s2 in the figure. But such a
possibility is excluded for predictively-free theories since the depth of Result(a, s0) is
greater than 0. For the predictively-free Δ as shown, two completions of Th2(Δ) are
shown as figures 2 and 3, which are of course also fragments of deterministic automata.
In figure 2, the choices for completing s1 and s2 were made before that of higher
depth situations s3 through s6, i.e., commitments were made to chronologically earlier
terms. Moreover, the choices were made on the basis of the principle of inertia which
formalizes the notion that unless a theory forces a fluent change, it should not happen.
Thus, fluent f remains true in s1, and likewise g remains true in situation s2, because
no change was forced by Th(Δ). However, in s4, fluent f must change on account of
equation 2, but s3, s5 and s6 need not have fluent changes from their preceding states.
We define inertia formally later.

In figure 3, fluent f violates inertia in s2, where fluent f has changed when it need
not done so. This completion has another feature, viz., from s1 and s2 which have
identical fluents holding, the result of applying the same action a to them results in

System Properties of Action Theories 419

f
g

-f
g

ab

abab

s0

s2

s3 s4 s5 s6

s1
g

f

-f
g

-f
g

f
g g

-f

Fig. 2. Chronologically inertial completion of minimal information tree.

f
g

-f
g

ab

abab

s0

s2

s3 s4 s5 s6

s1 -f
g

f
g

-f
g

-f
g

f
g

Fig. 3. Another (non-Markovian) completion of minimal information tree.

two situations (states) s4 and s6 which have different fluents. The condition that situ-
ations which agree on fluents make transitions under the same action to situations that
also agree on fluents is called Markovian. As such, the automaton in figure 3 is non-
Markovian. We will define this formally later.

4 Maximal Consistency and Deterministic Automata

Regardless of whether or not an action specification is predictively-free, from the dis-
cussion above, it is but a small step to observe that if we are given a situation calculus
action theory there is a straightforward correspondence between completions of the the-
ory and the loop-free automata that arise from viewing the situation trees of the theory
as a state-transition system. This follows from the well-known fact that every consis-
tent theory can be extended to a maximal consistent theory. Hence, if Γ is a situation
calculus theory and Γ1 is a maximal consistent extension of it, then for every situation
s and every fluent f , either Γ1 |= Holds(f, s) or Γ1 |= ¬Holds(f, s). This uniquely
determines a deterministic automaton via the translation: (i) the automaton state set Q
corresponds to the situations Sit, with initial situation s0 identified with initial state q0;
(ii) the automaton input set I corresponds to the actions Act; (iii) and for each fluent
f a state (corresponding to) s will output either f or ¬f depending respectively on

420 Norman Foo and Pavlos Peppas

whether Holds(f, s) or ¬Holds(f, s) is in the maximal extension (thus, the elements
of the output set Y are the consistent, complete sets of positive and negative fluents).
Since these maximal consistent extensions are also the models of the theory, we may
summarize these remarks as:

Observation 1. The models of a situation calculus action theory may be interpreted as
deterministic automata.

5 Effect Axioms and Constraints

An effect axiom is a formula of the form

ResultFormula(Result(a, s))← PrecondFormula(s) (4)

where ResultFormula(Result(a, s)) is a formula whose literals are only of the form
[¬]Holds(f, Result(a, s)), and PrecondFormula(s) is a formula whose literals are
only of the form [¬]Holds(f, s). By [¬] we mean that the negation may or may not oc-
cur. In such a formula, the situation variable s is common between
ResultFormula(Result(a, s)) and PrecondFormula(s), but fluent variables need
not be shared. Intuitively, an effect axiom specifies the direct effects of the action a
when the pre-condition specified by PrecondFormula is satisfied and the action is
performed. Equations 2 and 3 in the motivating example above are effect axioms.

Indirect effects, also called ramifications, can arise via interaction with domain con-
straints (e.g. [Zhang and Foo 1996]) or causal rules (e.g. [Thielscher 1999]). We confine
attention here to constraints, postponing a similar treatment for causal rules to a later
report. A constraint is a formula whose only situation term is a free s, meaning that
it must be satisfied in every model, or in the automaton view, every situation in every
possible tree has a fluent set consistent with the constraint.

The incompleteness of an action theory can arise because of one or more of the fol-
lowing reasons: (i) some effect axioms leave the status of some fluents (after an action)
unspecified, or (ii) there are non-deterministic effects. The second is complex enough
to warrant detailed treatment in a separate paper. In this paper we will concentrate on
actions that are definite in the sense defined below.

Definition 3. Let C be the conjunction of the set of constraints. If for all s, C ∪
ResultFormula(Result(a, s)) |= l1∨ . . . ln ⇒ C ∪ ResultFormula(Result(a, s))
|= li for some i, 1 ≤ i ≤ n, we say that action a is definite ([Zhang and Foo 1996]).

If there are no constraints, definiteness simply means that the effect sub-formulas
ResultFormula(Result(a, s)) are (conjunctions of) literals of the form
[¬]Holds(f, Result(a, s)).

Definition 4. When a is definite, let Post(a) =
{[¬]f |C ∪ ResultFormula(Result(a, s)) |= [¬]f}.

The significance of Post(a)1 is that it is exactly the set of fluents determined by
action a in the resulting state. Hence for any s, the status of fluents in Flu − Post(a)
is not determined in state Result(a, s).

1 It is independent of s.

System Properties of Action Theories 421

6 Review of Circumscription

The following Abnormality Axiom ([Lifschitz 1994,Shanahan 1997]) is usually intro-
duced to handle the well-known Frame Problem.

Ab(a, f, s)← ¬[Holds(f, Result(a, s))↔ Holds(f, s)] (5)

The atom Ab(a, f, s) is meant to signify that fluent f is abnormal with respect to action
a and situation s, i.e., it changes as a result of this action applied to this situation. “Most”
fluents are not abnormal, as intuitively only a small number of fluents are affected by
an action. The hope is that suitable choices for the interpretation of Ab in formula 5
used in conjunction with effect axioms of the form 4 will permit action theories to
be only partially specified, with implicit completions achieved by these choices. It is
also well-known that Circumscription [Lifschitz 1994] is a second-order scheme that
enforces such choices, and we shall assume that readers are familiar with it and merely
review notation. Circ(Γ (P); P ; Q) means the circumscription of the predicate P in
action theory Γ (P) in which P appears as a predicate constant, letting the predicate (or
function) Q vary. Let [[R]]M stand for the extension of predicate R in model M . The
effect of Circ(Γ (P); P ; Q) is to impose a partial order P on models of Γ (P), such
that M1 P M2 if [[P]]M1

⊆ [[P]]M2
, and the interpretations of all other predicates,

with the exception of Q, agreeing on M1 and M2. By saying that Q can vary, we mean
that the extensions (or function interpretations) [[Q]]M1

and [[Q]]M2
can be different.

Circ(Γ (P); P ; Q) selects those Γ (P) models which are P -minimal, and it is in this
sense that it mimimizes [[P]].

7 Abnormality, Inertia and the Markov Property

It was once hoped that by minimizing [[Ab]] in formula 5 we can constrain the change of
fluents to the least that is consistent with the specification Γ . This hope was only par-
tially fulfilled, because the models of Circ(Γ (Ab); Ab; Holds) sometimes included not
only the ones that were intuitively desired, but also some that achieved the minimiza-
tion of Ab by trading off its minimization in some places of the situation tree against
those in other places. The prototypical example of this is the infamous Yale Shooting
Problem (YSP) [Hanks and McDermott 1987], and partially represented in figure 4.

The situation calculus description of the YSP is:

Holds(L, Result(Load, s)) (6)

¬Holds(A, Result(Shoot, s))← Holds(Loaded, s) (7)

Holds(A, S0) (8)

¬Holds(L, S0) (9)

Note that there is no effect axiom for the Wait action. As this is a well-known
example, we recall it merely to cite its second Circ(Γ (Ab); Ab; Holds)-model (model
II in the figure) as an example of an Ab-minimal automaton that is not inertial in the
sense to be defined in section 8 below.

422 Norman Foo and Pavlos Peppas

A,-L A,L -A,LA,L

A,-L A,L A,-L A,-L
wait shootload

load wait shoot

II

I

Ab(I) = {<load,L,s0>,<shoot,A,s2>}

Ab(II) = {<load,L,s0>,<wait,L,s1>}

s1s0 s2 s3

Fig. 4. Partial situation trees for the Yale Shooting Problem.

8 Markovian and Inertial Models

Figures 2 and 3 suggest different ways to complete a theory. In the first figure, because
s0 and s1 have the same fluents, their resulting states also have the same fluents. This is
not so in the second figure where, e.g., although s1 and s2 have the same fluents, their
resulting states under action a do not. The predicate Equiv captures the notion that two
situations cannot be distinguished using their fluents.

Definition 5. Equiv(s1, s2)↔ ∀f [Holds(f, s1)↔ Holds(f, s2)]

Definition 6. A automaton M has the Markov property (is Markovian) if for all states
s1 and s2, and all actions a,

Equiv(s1, s2)→ Equiv((Result(a, s1), Result(a, s2)). (10)

Figure 2 suggests a Markovian automaton. It is possible (as suggested by figure 3)
for an automaton to be deterministic and yet not Markovian. In the next subsections
we will argue that standard ways of specifying actions are consistent with the Markov
property.

The formula below defines a lower bound on the extension of the predicate
Surprise. Intuitively, Surprise(s1, s2) holds whenever the states s1 and s2 violate
the Markov property, so if we circumscribe Surprise we should minimize this vi-
olation, and ideally, we may be able to abolish it altogether, i.e., [[Surprise]] = φ.
Since Equiv depends on Holds and Result, we could choose to let either of them
vary in circumscribing Surprise, but in this paper we will let Holds vary. (Varying
Result, an alternative introduced by Baker [Baker 1991], is treated in a companion
paper [Foo, et.al 2000], and also re-examined in [Foo, et.al 2001].

Surprise(s1, s2)← ¬Equiv(Result(a, s2), Result(a, s2))
∧Equiv(s1, s2) (11)

Observation 2. An automaton is Markovian if and only if [[Surprise]] = φ.

The next lemma and observation show that Markovian automata are not overly re-
strictive as models of predictively-free situation calculus theories. First, by definition
Post(a) is independent of s, hence is consistent with the Markov property.

System Properties of Action Theories 423

Lemma 1. Constraints, Effect axioms (4) and Abnormality axioms (5) are consistent
with the Markov property for predictively-free theories.

Corollary 1. For predictively-free theories, there is an automaton M such that if
Equiv(s1, s2), for each f such that [¬]f is not in Post(a), it is the case that
Holds(f,Result(a,s1))↔Holds(f,Result(a,s2)). M is consistent with [[Surprise]]
= φ.

Hence, predictively-free theories have Markovian models.

Definition 7. A state s is inertial if for every action a and fluent f, if [¬]f �∈ Post(a)
then Holds(f, s) ↔ Holds(f, Result(a, s)). An automaton is inertial if every state is
inertial.

Proposition 1. A predictively-free theory has an inertial automaton. Moreover, the au-
tomaton is unique.

In a trivial way, it is possible for the inertial automaton to satisfy a theory that is
not predictively-free. This can occur when all observation sentences of depth k > 0
are logically implied by the non-observational part of Δ and the observational sentence
about s0. Let us call such observational sentences redundant, and those that are not so
implied irredundant. Less trivially, it can simply be the case that each such sentence is
consistent with the (theory of) the inertial model even though they may be irredundant.
From these simple observations we may conclude that an action theory fails to have an
inertial model if it has an irredundant observation sentence that is inconsistent with the
inertial model. We investigate this further in a future paper.

9 Relationships

Proposition 2. The unique inertial automata are Markovian.

Proposition 3. Inertial automata are Ab-minimal.

The dependencies between the three properties of theories can be summarized as
follows (see figure 5).

Proposition 4. 1. Markovian �=⇒ Ab-Min
2. Ab-Min �=⇒ Markovian
3. Markovian �=⇒ Inertial
4. Ab-Min �=⇒ Inertial
5. Markovian and Ab-Min �=⇒ Inertial

These are demonstrated by counterexamples.
For (1), consider figure 6. This represents a theory in which the only action a has

no effect axiom, and the only fluent is f . It is clearly Markovian but is not Ab-minimal
as it is not inertial. This also shows (3).

For (2), consider figure 7 which is essentially a “gluing together” of the two Ab-
minimal models of the YSP (with Holds varying). Its Abnormal triples are displayed.

424 Norman Foo and Pavlos Peppas

MARKOVIAN Ab-Minimal

INERTIAL

+

Fig. 5. Dependencies.

a a a
f -f f -f

There is no effect axiom for action a

Fig. 6. Markovian but not Ab-Min (and not Inertial).

wait

A,-L A,L A,-L
wait

A,-L
load

t0

t1 t2 t3

shoot

A,-L A,L -A,LA,L
load wait shoot

s0 s1 s2 s3

III

Ab(III) = {<load,L,s0>,<shoot,A,s2>,<load,L,t0>,<wait,L,t1>}

Fig. 7. Ab-Min but not Markovian.

It is not hard to verify (from the fact that the two original models of the YSP are Ab-
minimal and incomparable) that this is also a Ab-minimal model. However, s1 and t1
show that it is not Markovian.

For (4) we use the model II of the YSP as shown in figure 4. It is Ab-minimal, but
the state s1 is not inertial.

For (5), the model II of the YSP again suffices. It is easy to extend the partial rep-
resentation in figure 4 to a Markovian model M which remains Ab-minimal, but is still
not inertial. The basic idea is to specify that in this extension all situations are inertial
except for those that are equivalent to s = {A, L}. Then any smaller interpretation
for Ab has to eliminate the abnormality due to wait, but it then introduces one for the
situations equivalent to Result(wait, s), which is not abnormal in M .

10 State Equivalence and Circumscription

In this section we will argue that Markovian models of action theories are in a strong
sense “natural”. And given this, there is a simple class of automata that can be con-
sidered to be natural models of these theories. Moreover, we can reason about the Ab
predicate using the automata models.

System Properties of Action Theories 425

10.1 Input-Output Equivalence

Recall the notation in section 2 for automata. We can ascribe to action theories an Input-
Output (I-O) view that is natural to automata. Let Ω be the free semigroup over the input
symbols I of the automaton, i.e, the “strings” with alphabet I . The I-O function of an
automaton is a map β : Ω → Y defined as an extension of the output map λ as follows.
For the empty string ε, β(ε) = {[¬]f |[¬]f is an output of the initial state}; if ωa is a
string ω followed by an action symbol a, then β(ωa) = λ(β(ω), a).
Intuitively, if ω is the action sequence a1 . . . ak, then β(ω) interpreted in the
action theory is simply the collection of fluent literals from the formulas
{[¬]Holds(f, (Result(ak, (. . . (Result(a1, s0) . . .) . . .)}.
Definition 8. Two automata M1 and M2 with respective I-O functions β1 and β2 are
I-O equivalent if β1 = β2.

I-O equivalence is a key concept in systems theory treated in the work of Zeigler
and his colleagues [Zeigler, et.al. 2000].

10.2 Markov and Ab-Minimal Models

That the combination of the Markov property and Ab-minimality is insufficient to
guarantee Inertia shows that the first two properties are not overly restrictive. In fact,
since both the Ab and Surprise predicates occur positively in their defining equations,
it is possible (see [Lifschitz 1994]) to reduce the parallel circumscriptions
Circ(Γ (Ab, Surprise); Ab; Holds) and Circ(Γ (Ab, Surprise); Surprise; Holds)
to their separate circumscriptions, and then intersecting their resulting model classes.
By corollary 1 earlier, we showed that the latter circumscription will succeed with
[[Surprise]] = φ. This permits both the models I and II in figure 4 to survive, but
eliminates model III in figure 7.

Suppose we have a model that is Markovian. Then Equiv is not only an equivalence
relation on Sit, but it is in fact a right-congruence relation with respect to actions, which
indeed is what definition 6 says. Regarded as an automaton M , this Markov property
is the basis of a reduced automaton MR ([Arbib 1969a]), which is a “quotient automa-
ton” whose states are the equivalence (congruence) classes [s] of M , and whose state
transition function δR is defined by δR([s], a) = [δ(s, a)]. The output function is de-
fined by λR([s]) = λ(s). Both of these are well-defined as Equiv is a right-congruence
relation. These are classical results in both systems [Arbib 1969b] and automata theory
[Arbib 1969a]. It is not hard to see that M and MR are I-O equivalent in the sense
of definition 8. Moreover, the states of MR all have different output fluent sets. The
advantage of viewing Markovian models as automata is due to a standard result, the
Nerode finite index theorem ([Arbib 1969b]). It essentially says that Equiv has finite
index if and only if MR is finite state. Hence in any action theory with only a finite
number of fluents, its Markovian models are reducible to finite automata. As automata
have efficient algorithms for model checking, queries about action theories can be com-
putationally tractable when their models are automata.

The ordering of Markovian models according to the extension of the Ab predicate
is preserved in the passage from automaton M to its reduced counterpart MR. We can
make this claim precise. To do so, we make the following observations:

426 Norman Foo and Pavlos Peppas

Observation 3. If Equiv(s1, s2) then in any Markovian automaton of an action the-
ory, Ab(a, f, s1) holds if and only if Ab(a, f, s2) holds.

Observation 4. In a reduced Markovian (this is essential) automaton, distinct states
have distinct output fluent sets.

Definition 9. For two reduced automata M1 and M2, M1 Ab M2 if and only if for all
actions a, fluents f and (reduced) states s1 and s2 (respectively in M1 and M2) which
have identical fluent sets, Ab1(a, f, s1) ⊆ Ab2(a, f, s2).

In reduced automata the nodes correspond to states. Note that the notion of abnor-
mality is well-defined even for reduced automata if we treat the (equivalence classes
of) states as abstract states in their own right. The next proposition justifies the use
of reduced automata as compact representations of those theories of actions that are
Markovian, as no Ab-minimal models are lost.

Proposition 5. If M1 and M2 are two Markovian models of an action theory and M1

and M2 are their reduced counterparts, then M1 Ab M2 implies M1 Ab M2.

Non-Markov models are discussed in [Foo and Peppas 2004].

11 Conclusion

This paper is part of a series that investigates relationships among different model
restriction and selection policies in logic-based theories of action using a systems-
theoretic perspective. We selected the simplest of situation calculus theories so that
the basic ideas are not obscured by distracting technicalities. The results are encour-
aging. For this class of theories we were able to identify the Markov property as a
sufficient condition for finite reduced automata to be their models. Moreover, the pos-
sible inter-dependencies among Markovian, inertial and abnormality-minimized models
were clarified. Nondeterminism is discussed in the full version of the paper
([Foo and Peppas 2004]). Future papers will report similar systems-theoretic insights
into theories which have arbitrary observation terms, causal rules and ramifications,
and the consequences of letting predicates other than Holds vary. For instance, in
[Foo, et.al 2001] we describe how circumscribing Ab in predictively-free theories by
letting Result vary guarantees the Markov property. Future work will extend these
techniques to event calculus logics.

References

[Arbib 1969a] M. Arbib. Theories of Abstract Automata, Prentice-Hall, 1969.
[Arbib 1969b] M. Arbib. Automata Theory: the rapprochement with control theory. In R.

Kalman, P. Falb and M. Arbib, Topics in Mathematical Systems Theory, McGraw-Hill, 1969.
[Baker 1991] A. Baker. Nonmonotonic Reasoning in the Framework of the Situation Calculus.

Artificial Intelligence, 49, 1991, 5-23.
[Foo, et.al 2000] N. Foo, P. Peppas, Q.B. Vo, D. Zhang. Circumscriptive Models and Automata.

Proceedings NRAC’01 Workshop, 17th International Joint Conference on Artificial Intelli-
gence, IJCAI’01, August 2001, Seattle.

System Properties of Action Theories 427

[Foo and Peppas 2004] N. Foo and P. Peppas. System Properties of Action Theories. Working
paper downloadable from http://www.cse.unsw.edu.au/ ksg/Pubs/ksgworking.html.

[Foo, et.al 2001] Norman Foo, Abhaya Nayak, Maurice Pagnucco and Dongmo Zhang. State
Minimization Revisited. Proceedings of the 14th Australian Joint Conference on Artificial
Intelligence, Springer LNAI 2256, ed. M. Stumpner ; D. Corbett ; M. Brooks, pp 153-164,
2001.

[Hanks and McDermott 1987] S. Hanks and D. McDermott. Nonmonotonic Logic and Temporal
Projection. Artificial Intelligence, 33, 1987, 379-412.

[Lifschitz 1994] V. Lifschitz. Circumscription. In The Handbook of Logic in Artificial Intelli-
gence and Logic Programming, vol. 3: Nonmonotonic Reasoning and Uncertain Reasoning,
ed. D.M. Gabbay, C.J. Hogger and J.A. Robinson, Oxford University Press, 297-352, 1994.

[Shanahan 1997] M. Shanahan, Solving the Frame Problem: a mathematical investigation of the
commonsense law of inertia, MIT Press, 1997.

[Thielscher 1999] M. Thielscher. From Situation Calculus to Fluent Calculus. Artificial Intelli-
gence, 111, 1999, 277-299.

[Winslett 1988] M. Winslett. Reasoning about actions using a possible models approach. Proc
Seventh National Artificial Intelligence Conference, AAAI’88, San Mateo, CA., 1988, Mor-
gan Kaufmann Publishers.

[Zeigler, et.al. 2000] B.P. Zeigler, H. Praehofer and T.G. Kim, Theory of Modeling and Simula-
tion :integrating discrete event and continuous complex dynamic systems, 2nd ed, Academic
Press, San Diego, 2000.

[Zhang and Foo 1996] Y. Zhang and N. Foo, Deriving Invariants and Constraints from Action
Theories , Fundamenta Informaticea, vol. 30, 23-41, 1996.

Identification of Gene Interaction Networks
Based on Evolutionary Computation

Sung Hoon Jung1 and Kwang-Hyun Cho2,�

1 School of Information Engineering, Hansung University, Seoul, 136-792, Korea
shjung@hansung.ac.kr

http://itsys.hansung.ac.kr/
2 College of Medicine, Seoul National University, Chongno-gu, Seoul, 110-799, Korea

and Korea Bio-MAX Institute, Seoul National University,
Gwanak-gu, Seoul, 151-818, Korea

Tel.: +82-2-887-2650, Fax : +82-2-887-2692
ckh-sb@snu.ac.kr

Abstract. This paper investigates applying a genetic algorithm and an
evolutionary programming for identification of gene interaction networks
from gene expression data. To this end, we employ recurrent neural net-
works to model gene interaction networks and make use of an artificial
gene expression data set from literature to validate the proposed ap-
proach. We find that the proposed approach using the genetic algorithm
and evolutionary programming can result in better parameter estimates
compared with the other previous approach. We also find that any a
priori knowledge such as zero relations between genes can further help
the identification process whenever it is available.

1 Introduction

With the advent of the age of genomics, an increasing number of researches to
identify gene interaction networks have been reported in [1–13] as a first step of
unraveling their functions. In order to identify gene (interaction) networks (or
genetic regulatory networks), a gene network model should be first built and
then the parameters of the network model should be estimated using gene ex-
pression data obtained from experiments such as DNA microarray. Identifying
a gene interaction network can be viewed as a reverse engineering in that the
interactions between genes should be determined from the gene expression data.
Gene networks have been modeled as Boolean networks [3], linear networks [4,
5, 9, 11], Bayesian networks [6], differential equations [14], and recurrent neu-
ral networks [1, 12, 13] and the parameters of the networks have been estimated
from gene expression data by simulated annealing, genetic algorithms, gradient
descent methods, and linear regression methods [4, 5, 8, 9, 11]. We can summa-
rize three major problems in the identification of gene network parameters from
gene expression data. First of all, the number of sampling points for the gene ex-
pression data obtained from experiments is usually too small compared with the

� Corresponding author.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 428–439, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Identification of Gene Interaction Networks 429

large number of parameters of the model, which results in insufficient accuracy of
the solutions for the parameter estimates. Secondly, from a viewpoint of reverse
engineering, there can be non-unique solutions that all fit the given gene expres-
sion data within the same error bound. Third, gene network models themselves
can only have limited mathematical structures which might not properly reflect
the real gene networks. As a consequence, no approach developed so far provides
a satisfactory solution resolving all these problems.

In this paper, we employ recurrent neural network models for the gene inter-
action networks, and utilize genetic algorithms (GAs) [15–17] and evolutionary
programming (EP) [18] to identify the parameters of the network model. Genetic
algorithms and evolutionary programming are known as robust and systematic
optimization methods which have been successfully applied to many scientific
and engineering problems. In the genetic algorithm, a chromosome is generally
composed of bit strings. Therefore, the solutions obtained by applying genetic
algorithms are discrete and the resolution of the solution is proportional to the
number of bits used in formulating the chromosomes. If only one bit is used
then the interaction between genes can be represented by either zero (inhibi-
tion) or one (activation) which becomes similar to the case of Boolean networks.
Evolutionary programming, a kind of evolutionary computation, is another op-
timization method which encodes a solution to a real value without coding a
bit string like GAs. EP uses only the mutation operation without the crossover
operation in GAs. In some applications, EP have been reported as showing a
better performance than GAs.

Wahde et al. [8] proposed a possible way of identifying the gene interaction
networks from the coarse-grained point of view by using a GA to estimate model
parameters defined upon a recurrent neural network model. In order to identify
model parameters, gene expression data must be available. Here we use artifi-
cial gene expression data obtained by a presumed model which was previously
used by Wahde et al. [8]. Experimental results are obtained by applying the
proposed approach based on the GA and the EP, respectively, and we compare
these experimental results with that of Wahde’s paper [8]. We further consider
using a priori knowledge in building a network model and estimating the param-
eter values. A notion of zero relations denoting non-interaction between genes
is introduced and we investigate how a priori knowledge such as the zero rela-
tions can further help the identification process. We also compare the resulting
parameter estimates with other ones.

This paper is organized as follows. In section 2, a gene network model is
introduced. Section 3 describes the proposed parameter estimation processes
based on the GA and the EP. The experimental results and discussions are
provided in section 4. Section 5 makes conclusions of this paper.

2 Gene Network Model

Gene interaction networks have been modeled by Boolean networks [3], linear
networks [4, 5, 9, 11], Bayesian networks [6], differential equations [14], and recur-

430 Sung Hoon Jung and Kwang-Hyun Cho

rent neural networks [1, 12, 13]. In this paper, we use a recurrent neural network
model [1, 8, 13] since it is the most descriptive deterministic modeling framework
among those, formulated by:

τi
dxi(t)

dt
= g

⎛⎝ J∑
j=1

Wi,jxj(t) + bi

⎞⎠− xi(t), (1)

where xi(t) denotes gene expression of a gene i at time instant t, g : � !→ � is
an activation function, Wi,j is the strength of control of gene j on gene i, bi is a
bias level of gene i, and τi is time constant of the ith gene expression product.
Sigmoid function g(z) = (1+e−z)−1 is generally used as the activation function.
Let z =

∑J
j=1 Wi,jxj(t) + bi, then (1) can be rewritten as

dxi(t)
dt

=
1
τi

(
1

1 + e−z
− xi(t)

)
. (2)

This equation can then be further represented by a difference equation as

xi[t + 1] =
1
τi

(
1

1 + e−z
− xi[t]

)
+ xi[t]. (3)

We note that g(z) ∈ (0, 1) guarantees (g(z) − xi[t]) ∈ (−xi[t], 1 − xi[t]). If the
initial value of xi[0] is in (0, 1), then (g(z) − xi[t]) ∈ (−1, 1). If xi[t] = 0 in
(3), then xi[t + 1] = 1

τi(1+e−z) , i.e., xi[t + 1] ∈ (0, 1/τi) If xi[t] = 1 in (3), then
xi[t + 1] ∈ (1− 1/τi, 1). Therefore, we confirm that xi[t + 1] is bounded between
0 and 1, provided that initial values of xi[0] lies between 0 and 1, and τi > 1. In
experiments, we use (3) with all τi > 1.

3 Parameter Identification

For the identification of network model parameters, several methods such as
simulated annealing, genetic algorithms, gradient descent methods, and linear
regression methods have been applied so far [4, 5, 8, 9, 11]. In this paper, we em-
ploy genetic algorithms and evolutionary programming to identify the network
model parameters since they are most efficient for nonlinear optimization prob-
lems.

Wahde et al. [8] also considered making use of the GA to identify model
parameters defined upon a recurrent neural network model. They used artificial
gene expression data (the patterns of which are very similar to real gene expres-
sion data as they showed) obtained from a presumed artificial network. However,
we find that the standard deviation of the resulting parameter estimates are too
broadly distributed from the average values. On the other hand, we confirm that
the proposed approach in this paper reveals better performance in this regard
as we can see in the following section. The difference is mainly caused by the
structure of GA such as the encoding scheme and crossover methods and by the

Identification of Gene Interaction Networks 431

parameters used in the GA such as the crossover and mutation probabilities and
termination conditions. In general, the encoding scheme and crossover methods
greatly affect the performances of GA. Algorithm 1. illustrates the operation of
the GA used here [16].

Algorithm 1. Genetic Algorithm
// t : time //
// P : populations //

1 t ← 0
2 initialize P (t)
3 evaluate P (t)
4 while (not termination-condition)
5 do
6 t ← t + 1
7 select P (t) from P (t − 1)
8 recombine P (t)
9 evaluate P (t)
10 end

Chromosomes (in other words, individuals) in the GA are represented by bit
strings of a fixed number by a chosen encoding scheme. According to this encod-
ing scheme, a specific number of initial individuals are generated with uniformly
distributed random values. Then, the fitness of each individual is assigned by the
evaluation operation. To make the next generation, the GA selects parents and
then recombines them to generate offsprings with the assignment of their fitness
values. This evolution process continues until a solution is obtained within the
given specification of an error bound.

We encode the parameters of a gene network model into a number of bit
strings. If there are P parameters and the number of bits for one parameter is
K, then one chromosome is composed of the P ∗K number of bits. In this case,
we note that the resolution of a solution becomes 2K . If the K is one, then the
recurrent neural network model is similar to the Boolean network in that the
parameters can have either of the two values, i.e., one for inhibition and the
other for activation between genes. Thus, one of the advantages using a GA is
that we are able to control the resolution of a solution as needed. As the P and
K increase, the bit strings of a chromosome increase much faster, in which one
point crossover is not enough to cover the whole length of chromosomes. Hence
we employ in this paper a multi-points crossover scheme. The parameters used
in implementing the GA are summarized in Table 1. Note that we use the 40
number of crossover points because the bit strings of an individual is very large
(720 bits = 24 parameters * 30 bits).

In order to identify model parameters, we use an artificial gene expression
data set obtained by a presumed model which was also used by Wahde et al. [8].
The artificial data set is composed of expression levels of 4 genes with 30 time
points. We identify total 24 parameters (16 interaction weight parameters (Wi,j),

432 Sung Hoon Jung and Kwang-Hyun Cho

Table 1. Parameters for the GA.

Parameters Values

Crossover probability (pc) 0.6
Crossover points 40
Normal mutation probability (pm) 0.01
Population size 20
Individual length (24 * 30) bits
Termination condition 0.001

4 bias parameters (bi), and 4 time constant parameters (τi)). Each parameter is
represented by 30 bits. Each individual contains the set of all encoded parame-
ters to be estimated and the estimates are being updated as generations evolve
according to the GA. In order to measure how close an individual j approaches
to the solution, the individual j is first decoded into the gene network model.
Then, the following mean square error δj of the jth individual is obtained by
the trajectories from the decoded gene network model.

δj =
1

T ∗N

N∑
i=1

T∑
t=0

(
xi[t]− xd

i [t]
)2

, (4)

where N is the number of genes, T is the total number of sampling time points,
xi[t] is the expression level of ith gene under the decoded gene network model,
and xd

i [t] is the desired expression level obtained from the artificial network or an
experimental result in real application. The number of parameters identified is
N(N +2) when the number of genes is N because the bias bi and time constants
τi in addition to the weights Wi,j are also identified. For a reasonably accurate
estimation of the network parameters, T > N +2 is required because the number
of data is T ∗N in (4).

We use a mean square error for the termination condition. If an individual
has a mean square error less than the termination condition in a generation, the
GA terminates. We note that the mean square error however can not guarantee
the quality of the resulting solution since there are a number of parameter sets
which can show the similar trajectories as the given data set. This is one of the
important difficulties faced in the identification of gene interaction networks.

The mean square error is also used as a measure of fitness for each individual.
Since the fitness should be inversely proportional to the mean square error, the
fitness of jth individual is given by

fj =
1

δj + 1
. (5)

Even if the GA can be applied to continuous domain problems, the GA is in
general more useful when the problem domain is discrete since the individuals
are represented as bit strings. Therefore, the resolution of a solution depends on
the number of bit strings. The EP on the other hand as another evolutionary

Identification of Gene Interaction Networks 433

Algorithm 2. Evolutionary Programming
// 2m : the number of population, (m parents + m offspring) //
// Xi : the ith vector of population P //
// F (Xi) : the objective function of vector Xi //
// Ji : the score of vector Xi, Ji←F (Xi) //
// Wi : the number of winning in competition //
// σi : the perturbation factor of vector Xi, σi ∝ Ji //

1 initialize population P = [X0, X1, . . . , X2m−1]
2 while (not termination-condition)
3 assign a score Ji to each solution vector Xi

4 compete and count the winning number of Xi with the others Xj(�= Xi)
5 select m parents solutions according to the number order of Wi

6 generate offspring by adding a Gaussian perturbation N(0, σi) to parents
7 end while

computation method, however, does not encode the given problem domain into
bit strings and makes use of the real value as they are. This enables the EP to
lead to the better resolution of a solution. From this regard, we apply the EP
to identify the gene interaction network parameters. Algorithm 2. illustrates the
procedure of the EP used in our experiments.

While the main operation in the GA is the crossover and the GA makes
each individual evolve towards improved fitness, the main operation in the EP
is the mutation (by adding a Gaussian perturbation) and thereby make each
individual evolve towards a decreasing score. As shown in the algorithm 2., the
more individuals come close to the optimum the smaller Gaussian perturbation
is added. Table 2 summarizes the parameter values used for the implementation
of the EP. As we already mentioned in the algorithm 2., the σi is in general
given as proportional to the score Ji; however, we use a constant value here
(see Table 2) since the EP sometimes can fall into a local optimum, which is
unavoidable if the score at that instant becomes too small.

Table 2. Parameters for the EP.

Parameters Values

of population (2m) 100
ith vector Xi the 24 number of real values
score of vector Xj δj at equation (4)
the number of winning in competition 40
σi 10.
Termination condition 0.001

4 Experimental Results

In order to identify gene interaction networks, gene expression data from such
as DNA microarray must be available. On the other hand, directly using the

434 Sung Hoon Jung and Kwang-Hyun Cho

Table 3. Parameter values assumed for the artificial data.

Wi,j bi τi

20.0 5.0 0.0 0.0 0.0 10.0
25.0 -5.0 -17.0 0.0 -5.0 5.0
0.0 10.0 20.0 -20.0 -5.0 5.0
0.0 0.0 10.0 -5.0 0.0 15.0

real gene expression data has also a drawback in that the identified results can
not be verified until we conduct another experiments to validate the estimated
parameter values. Hence we use in this case a set of artificial data obtained from
a presumed artificial network model (so we know the exact value of parameters
to be estimated and thereby can easily validate the results of the proposed
approach). As previously mentioned in Section 2, we use the difference equation
model described in (3). We assume a set of gene expression data obtained by
using the parameter values shown Table 3 in the model. Figure 1 shows the
artificial data with 30 number of time points for T .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

E
xp

re
ss

io
n

Le
ve

l

t

Gene Expression

x1
x2
x3
x4

Fig. 1. Artificial data.

We applied the proposed identification approaches based on the GA and
the EP to this set of artificial data. Figure 2 illustrates the typical trajectories
exhibited by the network model using the identified parameter values. As shown
in Figure 2, the trajectories of the EP are more accurate than those of the GA.
This is because the EP directly makes use of the real value for encoding while
the GA employs bit strings instead. As it is mentioned before, there are other
numerous set of parameter values which are in accord with the given expression
data within a small error bound. We takes here the average values of 50 runs
(as same with that of Wahde et al. [8]). Table 4 (a), (b), and (c) compare each
experimental result, i.e. the proposed GA, the proposed EP, and the Wahde et
al.’s GA, respectively. In Table 4, each number denotes the average value of 50
runs and the value within the parenthesis indicates the corresponding standard

Identification of Gene Interaction Networks 435

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

E
xp

re
ss

io
n

Le
ve

l

t

Gene Expression

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

E
xp

re
ss

io
n

Le
ve

l

t

Gene Expression

(b)

Fig. 2. Typical gene expression time-series trajectories for each set of parameter esti-
mates obtained by the GA (a) and the EP (b).

deviation. We took one of experimental results of Wahde et al.’s GA with the
same number of time points over the same trajectories. From Table 4, three
results look quite similar, but the proposed GA and EP are somewhat better
than that of Wahde et al.’s GA. We speculate that this result is caused by the
difference of the structure and parameter values used for the GA1. We need to
further investigate which approach can be always better than the others in a
certain environments.

In order to examine the effects by the number of simulation runs, we have
conducted additional experiment of 50 simulation runs further to the experi-

1 More systematic analysis and discussions for comparison between Wahde et al.’s GA
and proposed GA are not possible because there is no detailed descriptions about
the structure and parameter values of Wahde et al.’s GA in their paper [8].

436 Sung Hoon Jung and Kwang-Hyun Cho

Table 4. Comparison of the experimental results: (a) the proposed GA (b) the pro-
posed EP, and (c) Wahde et al.’s GA.

(a)

Wi,j bi τi

17 (±9.3) 11 (±13) 6.7 (±15) 4.0 (±16) 3.1 (±5.5) 10 (±1.1)
20 (±7.8) -13 (±5.3) -11 (±10) -9.4 (±12) 5.1 (±4.7) 5.2 (±0.5)
-12 (±9.3) 16 (±7.9) 12 (±9.5) 13 (±11) -4.8 (±4.6) 5.8 (±0.6)
-4.5 (±13) 11 (±12) 14 (±11) 1.4 (±15) -0.4 (±5.4) 17 (±1.8)

(b)

Wi,j bi τi

14 (±13) 9.1 (±15) 7.9 (±14) 7.1 (±17) 3.7 (±6.1) 10 (±1.1)
24 (±6.1) -15 (±4.2) -18 (±8.2) -8.2 (±10) 8.0 (±2.9) 5.1 (±0.3)

-8.7 (±8.4) 15 (±8.6) 12 (±10) 15.2 (±14) -8.3 (±2.7) 5.1 (±0.6)
6.3 (±15) 12 (±14) 11 (±14) 4.4 (±15) -1.3 (±7.3) 18 (±1.8)

(c)

Wi,j bi τi

11 (±11) 7.8 (±12) 7.5 (±12) 0.8 (±13) 3.7 (±4.8) 11 (±1.2)
14 (±7.7) -16 (±7.3) 0.45(±13) -2.4 (±14) 1.8 (±4.6) 7.5 (±1.8)
5.9 (±14) 11 (±11) 6.1 (±13) 3.2 (±14) 1.9 (±5.8) 9.1 (±0.7)
3.0 (±11) 1.5 (±13) 5.3 (±11) -16 (±7.0) 1.6 (±5.7) 16 (±5.3)

Table 5. Experimental results of our EP at 100 runs.

Wi,j bi τi

15 (±12) 7.1 (±15) 7.5 (±15) 8.4 (±17) 2.6 (±6.4) 10 (±1.1)
25 (±5.7) -15 (±4.0) -18 (±7.7) -8.7 (±10) 8.0 (±2.7) 5.1 (±0.4)

-8.6 (±8.7) 15 (±8.5) 13 (±10) 13.3 (±14) -8.4 (±2.7) 5.1 (±0.6)
7.5 (±15) 10 (±16) 10 (±13) 5.0 (±15) -0.7 (±7.0) 18 (±1.8)

ments of Table 4 (b). The result of the total 100 simulation runs of the proposed
EP is shown in Table 5. From Table 5, we confirm that there are changes towards
the correct values although the changes are very small.

In order to compare the results in a more formal way, we introduce the con-
cept of an identification rate defined as follows. Let Pn, n = {1, 2, . . . , N(N +2)}
composed of Wi,j , bi, and τi, where N is the number of genes in the artificial
network that generates the given set of artificial gene expression data. For exam-
ple, P1 = W1,1, P2 = W1,2, . . ., PN(N+2) = τN . Let P

′
n, n = {1, 2, . . . , N(N +2)}

composed of W
′
i,j , b

′
i, and τ

′
i the model parameters of the identified network.

Let the average value and standard deviation of Pn represented by ρPn and σPn ,
respectively. Then the identification rate ψ between the P and P

′
is given by

ψP,P ′ =
1

N(N + 2)

N(N+2)∑
n=1

1
[1 + η(ρPn − ρP ′

n
)2][1 + (1− η)(σPn − σP ′

n
)2]

, (6)

where η is a ratio how much the average term affects the identification rate
compared with the standard deviation.

Identification of Gene Interaction Networks 437

In (6), ρPn = Pn and σPn = 0 since the model parameters in the case
of an artificial network have a unique set of real values. If η is one, then the
identification rate takes only average value without considering the standard
deviation and vice versa. We consider, as an extreme example first, a parameter
Wi,j and W

′
i,j have zero standard deviations, respectively and the difference

between their average values is 10. Secondly, a parameter Wi,j and W
′
i,j have

the same average value and the difference between their standard deviations is
10. Then, the two cases produce a same identification rate for the parameter if
η is not considered. Intuitively, the second case should be better than the first
case. However, the standard deviation term must not be ignored since even if the
average values are same, we still cannot regard it as a good one in the case that
the difference of standard deviations is very large. This measure of identification
is further used and the results are summarized in Table 7.

If there are certain available a priori knowledge, it can further help the iden-
tification process by eliminating infeasible solutions in advance. For instance, we
consider a priori knowledge about ’zero relations’ (meaning that there exists no
interaction between two genes) prior to the proposed EP algorithm. Normally
initial individuals are generated by random values within the predefined ranges;
however, with this a priori knowledge, we can replace the initial random value
with zero at the point already known from the a priori knowledge and similarly
for the evolution process of individuals. Table 6 illustrates the experimental re-
sult with this a priori knowledge. It is apparent that this result is better than
the previous results. However, we note that the weight in the third row and the
fourth column W3,4 is still positive even though it is set to -20 in the presumed
artificial network. This is because the affect of the weight on the overall gene
expression data is too small. After all, we find from this experiment that any a
priori knowledge about the gene interaction could be of great help in the identifi-
cation of the network model and the a priori knowledge is in most cases available
from the real experimental environments.

Table 6. Experimental results with the zero relations.

Wi,j bi τi

17 (±9.3) 8.3 (±14) 0 (±0) 0 (±0) 0 (±0) 10 (±1.2)
22 (±8.4) -13.3 (±4.8) -23 (±6.1) 0 (±0) 7.6 (±4.0) 5.2 (±0.4)

0 (±0) 9.3 (±5.4) 11 (±10) 10(±14) -9.4 (±0.9) 5.4 (±0.8)
0 (±0) 0 (±0) 12 (±10) 3.2(±14) 0 (±0) 18 (±2.2)

Table 7. Identification rates.

Methods ψ

Wahde’ GA 0.042
Our GA 0.134
Our EP 0.138
Our EP with 100 runs 0.140
Our EP with zero relations 0.458

438 Sung Hoon Jung and Kwang-Hyun Cho

Table 7 summarizes the comparison of the identification rates of each result
under the η is 0.9. We note that the proposed GA and EP approaches show
considerably better identification rates than that of Wahde et al.’s GA. From
the fourth row in Table 7, the more the number of simulation runs increases,
the better the identification rates are. As can be easily guessed, using the zero
relations increases the identification rates as well.

5 Conclusions

In this paper, we proposed the GA and the EP to identify gene interaction
networks by estimating the network parameters. With an artificially generated
set of gene expression data, the two approaches have been validated as improving
the identification performance compared to the previously reported approach
in the literature. We further considered using a priori knowledge such as the
zero relations between genes for preprocessing of the proposed EP approach
and confirmed that using such a priori knowledge can be of much help in the
identification process. We note however that some of the parameter estimates
obtained by the proposed approaches can have relatively large errors and it
should be further investigated by rigorous analysis.

Acknowledgment

This research was financially supported by Hansung University in the year of
2004 and also partially supported by a grant from the Korea Ministry of Sci-
ence and Technology (Korean Systems Biology Research Grant, M10309000006-
03B5000-00211).

References

1. Reinitz, J., Sharp, D.H.: Mechanism of eve stripe formation. Mechanisms of
Development (1995) 133–158

2. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and dis-
play of genome-wide expression patterns. In: Proceedings of the National Academy
of Sciences. (1998) 14863–14868

3. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small
number of gene expression patterns under the Boolean network model. In: Pacific
Symposium on Biocomputing. (1999) 17–28

4. Weaver, D., Workman, C., Stormo, G.: Modeling regulatory networks with weight
matrices. In: Pacific Symposium on Biocomputing. (1999) 112–123

5. D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modelling of mRNA
expression levels during CNS development and injury. In: Pacific Symposium on
Biocomputing. (1999) 41–52

6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to
analyze expression data. Journal of Computational Biology (2000) 601–620

7. D’haeseleer, P.: Reconstructing Gene Networks from Large Scale Gene Expression
Data. PhD thesis, University of New Mexico, Albuquerque (2000)

Identification of Gene Interaction Networks 439

8. Wahde, M., Hertz, J.: Coarse-grained reverse engineering of genetic regulatory
networks. BioSystems (2000) 129–136

9. van Someren, E., Wessels, L., Reinders, M.: Linear modelling of genetic networks
from experimental data. In: Proceedings of the Eighth International Conference
on Intelligent Systems for Molecular Biology. (2000) 355–366

10. van Someren, E., Wessels, L., Reinders, M.: Genetic network models: A com-
parative study. In: Proceedings of SPIE, Micro-arrays: Optical Technologies and
Informatics. (2001) 236–247

11. Wessels, L., van Someren, E., Reinders, M.: A comparison of genetic network
models. In: Pacific Symposium on Biocomputing. (2001) 508–519

12. Wahde, M., Hertz, J.: Modeling genetic regulatory dynamics in neural develop-
ment. Journal of Computational Biology 8 (2001) 429–442

13. Takane, M.: Inference of Gene Regulatory Networks from Large Scale Gene Ex-
pression Data. Master’s thesis, McGill University (2003)

14. Chen, T., H. He, G.C.: Modeling gene expression with differential equations. In:
Pacific Symposium on Biocomputing. (1999) 29–40

15. Holland, J.: Adaptation in natural and artificial systems. 1st ed.: University of
Michigan Press, Ann Arbor; 2nd ed.: 1992, MIT Press, Cambridge (1975)

16. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison–Wesley, Reading, MA (1989)

17. Davis, L.: Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold
(1991) L. Davis editor.

18. Fogel, D.B.: An Introduction to Simulated Evolutionary Optimization. IEEE
Trans. on Neural Networks 5 (1994) 3–14

shinmy@etri.re.kr

goel@ecs.syr.edu

∈ ∈

=

φ
=

φ || μ || ⁄ σ
=

|| μ || ⁄ σ

φ μ σ

μ σ

σ δ
≤ σ ≤

δ

δ
σ

δ
σ

μ σ

Component Architecture Redesigning Approach
Using Component Metrics

Byungsun Ko and Jainyun Park

Major in Computer Science, Division of Information Science,
Sookmyung Women’s University

Yongsan-ku, Seoul, 140-742, Korea
{kobs,jnpark}@sookmyung.ac.kr

Abstract. Components are reusable software building blocks that can
be quickly and easily assembled into new systems. Many people think
the primary objective of components is reuse. The best reuse is reuse of
the design rather than implementation. So, it is necessary to study the
component metrics that can be applied in the stage of the component
analysis and design. In this paper, we propose component architecture
redesigning approach using the component metrics. The proposed com-
ponent metrics reflect the keynotes of component technology, base on
the similarity information about behavior patterns of operations to offer
the component’s service. Also, we propose the component architecture
redesigning approach. That uses the clustering principle, makes the com-
ponent design as the independent functional unit having the high-level
reusability and cohesion, low level complexity and coupling.

1 Introduction

Component-based software development (CBD) has become widely accepted as a
cost-effective approach to software development. CBD is capable of reducing the
developmental costs using the well-designed components. Therefore, it is capable
of improving the reliability of an entire software system, and emphasizes the
design and the construction of software systems using reusable components [1,2].
Many want to design something once and use it over and over again in different
context, thereby realizing the large productivity gains, taking advantage of the
best solutions, the consequent improved quality, and so forth. The quality is
importance in every software development, but particularly that is so in CBD
because of its emphasis on reuse. The best reuse is reuse of the design rather
than implementation.

In this paper, we propose component architecture redesigning approach. That
is based on the component metrics and the clustering principle.

The component is an individual functional unit, made of interfaces and
classes. Conceptually, interfaces define the service of the component, and specif-
ically, that is a set of operations that can be invoked by other components or
clients. The invoked operations offer the component’s service by interacting with
the inside and outside classes of the component. The interaction information is
extracted in the analysis & design stage of the component-based system, and

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 449–459, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

450 Byungsun Ko and Jainyun Park

represents behavioral types of operations. So, we define the component metrics
based on the interaction information. We expect to develop the high quality
component design model by measuring and redesigning of the component archi-
tecture.

The rest of this paper is organized as follows. Section 2 explains related
works. Section 3 describes abstract representation models for the components
and defines component metrics. Section 4 shows the component architecture
redesigning process. Section 5 shows experiments on the case study. Our conclu-
sions are presented in section 6.

2 Related Works

2.1 The Keynote of Components

The component based systems adhere to the principle of divide and conquer for
managing complexity – break a large problem down into smaller pieces and solve
those smaller pieces, then build up more elaborate solutions from simpler and
smaller foundations. The goal of CBD is high abstraction and reuse. Therefore,
it is necessary to measure component’s quality for the more abstraction and
reuse [3,4,5].

To measure component’s quality, it is necessary for us to define the terms
previously. So, we will investigate the definition and keynote about component
technology [1,2,5].
– Component is an executable unit of independent production, acquisition,

and development that can be composed into a functioning system.
Component is a unit of composition with contractually specified interfaces,
and can be developed independently and is subject to composition by third
parties.

– Interface represents a service that the component offers, is the component’s
access point.
The interface as an access point allows clients to access and connect the
services provided by the component. Namely, the interface plays dual roles
as it serves both providers of the interface and clients using the interface.
Technically, the interface is a set of operations that can be invoked by clients.

– Component follows the object principle of combining functions and related
data into a single unit.
At this time, the classes belong to the role of data and the interfaces belong to
the role of function about the component. So, we can consider the component
as the group of classes and operations.

2.2 Quality Models

The structural properties of a piece of software, such as cohesion, coupling and
complexity, can serve as indicator of important software quality attributes. For
instance, highly complex components are more likely to contain faults, and there-
fore may negatively impact on system reliability and maintainability [3].

Component Architecture Redesigning Approach Using Component Metrics 451

Quality modeling based on the structural properties of the artifacts is par-
ticularly valuable, because it can provide easily feedback on the quality of com-
ponents. So, it is necessary component metrics. Other advantages of quality
modeling based on the measurement of structural properties are the measure-
ment process is objective, does not rely on subjective judgment, and can be
automated [6].

3 Component Quality Measurement

3.1 Abstract Representation Models

We believe that a good abstract representation model objectively depicts the re-
lationships among the members of a component, and it is the precondition of a
well-defined component quality measurement. If the component quality measure-
ment can abstract the relationship among the members of a component properly,
then there is little questionable. Therefore, an abstract representation model is
important.

In this section, we will propose good abstract representation models. They
stand for operations, interfaces, classes, components, communication and rela-
tionship among them. That is, the abstract representation models stand for the
necessary information to derive component metrics.

Definition 1. Component Architecture Organization Graph (CAOG)

CAOG represents the organization of the component-based system. Generally
speaking, the component architecture about the system made of components and
the component made of operations and classes. CAOG shows the members of
components and the interactions among them, is defined to be a directed graph.

CAOG = (VCo, ECo)

where,

– VCo is a set of vertex, VCo = Vo ∪Vc. Vo is a set of operations of an interface
in a component and Vc is a set of classes in a component.

– ECo is a set of edges such that ECo ={〈x,y〉|x∈Vo, y∈Vc such thatxuses y}.
The notations are like this. A circle or a rectangle represents each vertex.

The circle represents operations, and the rectangle represents classes. An arrow
represents each edge with the direction from operation to class, which shows
the relationships between operations and classes to deliver the service of the
component. Each component is represented by a dotted rectangle. It is clear that
the CAOG about the design model of the component-based system consists of
two types of nodes, operations and classes, and one type of edges, that represents
use-dependence between operations and classes, respectively.

Definition 2. Operation Use Matrix (OUM)

452 Byungsun Ko and Jainyun Park

For any operation in the interface, the OUM shows the amount of classes that
any pairs of operations use in common to deliver the service of a component.

The OUM is a square matrix. Its dimension equals to the total number of
operations. Each element of OUM is calculated from the CAOG. The value of the
OUM is the number of classes, each pair of operations use in common to deliver
the very component’s functionality. So, the value is a positive number. The
diagonal elements of OUM represent the number of classes that each operation
uses one’s own operation, and the off-diagonal elements represent the number
of classes that a pair of operations uses in common to deliver the component’s
service.

Each row in the OUM is a row vector, which denotes the behavioral type
of that operation. That is, it represents how much the operation interacts with
other operations to offer the service.

OUM(p, q) = Common Use(p, q)

Common Use(p, q) =
{

Common Use(p), if p = q
Common Use(p, q), if p �= q

where,

– Common Use(p) means the number of classes which operation p uses by
itself, Common Use(p)is the same as Common Use(q).

– Common Use(p, q) means the number of classes which operation p and op-
eration quse in common.

– p and q are the number, represents the order of the operations, is used in
row-number or column-number of matrix.

Definition 3. Operation Similarity Matrix (OSM)

For any operation in the interface of the component, the OSM shows the
degree of the similarity in the behavioral type between operations to deliver the
service of the component.

The OSM is a square matrix. Its dimension equals to the total number of
operations, and is the same as OUM. The OSM is calculated from the OUM.
To deliver the service of the component, the operations interact with inside
classes or outside classes of the component. We can find out the behavioral
type of operations according to the amount of the operation’s communication.
The similarity about the behavioral type between operations is expressed as the
cosine value. The cosine value is the ratio of the length of the side adjacent to
an acute angle to the length of the hypotenuse in a right triangle. The abscissa
at the endpoint of an arc of a unit circle centered at the origin of a Cartesian
coordinate system, the arc being of length x and measured counterclockwise from
the point (1, 0) if x is positive or clockwise if x is negative. Here, we calculate the
cosine value about the angle between row vectors from the OUM. That means
the degree of the similarity between the row vectors to deliver the service of the
component.

The OSM is a symmetric matrix. Because the diagonal elements of OSM
represent the similarity of the same operations, its value is 1. And the off-diagonal

Component Architecture Redesigning Approach Using Component Metrics 453

elements represent the similarity about the interaction between the operations,
its value is between 0 and 1, and two values are inclusive. The cosine value
between the two row-vectors is derived from the gap of angles. The narrower the
gap of an angle is, the closer to 1 the value is. Therefore, we can find out the
degree of the similarity about the behavioral type between the row-vectors to
deliver the component’s service.

OSM(p, q) = Type Similarity(p, q)

Type Similarity(p, q) = ObliqueSideV√
BaseSideV

ObliqueSideV =
∑t

i=1 Common Use(p, i)× Common Use(q, i)

BaseSideV =
∑t

i=1 (Common Use(p, i)× Common Use(q, i))2

Where,

– t is the total operation number of all the components in component archi-
tecture.

– p and q are the number which represents the order of the operations. So, let
1 ≤ p, q ≤ t .

3.2 Component Metrics

In this section, we will define component cohesion and coupling measurement
based on the CAOG. Then, we use briand’s criterion to validate our metrics
and show that our metrics have the properties what a well-defined cohesion and
coupling measurement should have.

Cohesion is a measurement about the degree of the dependency among the
internal elements of the component. The component serves as a unit of encapsu-
lation and independence, consists of data and the functions that process those
data. The unification of the internal elements of component, improves the cohe-
sion. Therefore, we define the component cohesion metric based on the similarity
about the behavioral type of operations in the component.

Coupling is the degree to which various entities in the software connected.
These connections cause dependencies between the entities that have an impact
on various external system quality attributes [7,8,9]. Component coupling is a
measurement about the degree of dependency among components. It implies how
much independent the component is potentially [1,7]. Therefore, we define the
component coupling metric based on the similarity about the behavioral type of
operations in interactions among the different components.

Definition 4. Cohesion Metric by Operation Type (COHOT)

The cohesion measure COHOT (Coi) of a component Coi is defined out of
the OSM, which denotes the similarity about the behavioral type of operations.

Cohesion represents the degree of the dependency among the internal ele-
ments of the component. If the behavioral type of operations is similar to each
other, they have much dependency each other internally. Therefore, if the oper-
ations with the similarity close to each other are included into the same compo-
nent, cohesion of the component will be stronger.

454 Byungsun Ko and Jainyun Park

COHOT (Coi) = SumCHV 1−SumCHV 2
TotalCH

SumCHV 1 =
∑ni

p=1

∑ni

q=1 Type Similarity(p, q)

SumCHV 2 =
∑ni

p=1

∑ni

q=p+1 Type Similarity(p, q)

TotalCH = ni(ni+1)
2

Where,

– i means the order of components in the component architecture, it is called
as a sequential number.

– ni is the total number of operations in the interface of component Coi

We include the similarity only in case of p ≥ q in the calculation. So, we
consider the similarity only in case of 1 ≤ p ≤ ni and 1 ≤ q ≤ p. That reason
is to avoid the duplication in the process of calculation, because OSM is the
symmetric matrix.

Now, we will investigate the theoretic validation of component cohesion met-
ric. A well-defined component cohesion measure should have these properties,
otherwise the usefulness of that measure is questionable. Although these prop-
erties are not sufficient conditions of a well-defined measure, they can be used
to check the problems in a measure and can be used as a guide to develop a
new measure. Briand stated that a well-defined class cohesion measure should
have the following four properties [10,11]. And they make the metrics stricter
and less experimental. Table 1 shows the properties and meaning about cohesion
measure.

Definition 5. Coupling Metric by Operation Type (COPOT)

The coupling measure COPOT (Coi) of a component Coi is defined out of
the OSM, which denotes the similarity of the behavioral type of operations.

Coupling represents the degree of the dependency between components. If
the behavioral type of operations in one component is similar to that in the
other component, components have much dependency each other. Therefore, if
the operations of the different components have the similarity close to each other,
the coupling of the component will be stronger.

Table 1. The properties of cohesion measurement.

Property Contents

Cohesion 1 Non-negativity and Normalization (∃Co)(Cohesion(Co) ∈ [0, 1])

Cohesion 2 Null Value (∃Co)(Rc = ∅ ⇒ Cohesion(Co) = 0)

Cohesion 3 Monotonicity (∃Co)(RCo ≤ R′
Co ⇒ Cohesion(Co) ≤

Cohesion(Co′))
Cohesion 4 Cohesive components

(∃Co1,∃Co2)(max{Cohesion(Co1), Cohesion(Co2)} ≥
Cohesion(Co3))

Component Architecture Redesigning Approach Using Component Metrics 455

COPOT (Coi) = SumCPV 1−SumCPV 2
TotalCP

SumCPV 1 =
∑ni

p=1

∑t
q=1 Type Similarity(p, q)

SumCPV 2 =
∑ni

p=1

∑ni

q=1 Type Similarity(p, q)

TotalCP = ni × (t− ni)

Now, we will investigate the theoretic validation of component coupling met-
ric. Table shows the properties and meaning about coupling measure. And they
are satisfied.

Table 2. The properties of coupling measurement.

Property Contents

Coupling 1 Non-negativity (∃Co)(Coupling(Co) ≥ 0)

Coupling 2 Null Value (∃Co)(Rc = ∅ ⇒ Coupling(Co) = 0)

Coupling 3 Monotonicity (∃Co)(Rco ≤ RCo′ ⇒ Coupling(Co) ≤
Coupling(Co′))

Coupling 4 Merging of components
(∃Co1, ∃Co2)(Σ{Coupling(Co1), Coupling(Co2)} ≥
Coupling(Co3))

Coupling 5 Disjoint component additivity
(∃Co1, ∃Co2)(Σ{Coupling(Co1), Coupling(Co2)} =
Coupling(Co3))

4 Component Architecture Redesigning Approach

In this section, we will define the component architecture redesigning process.
The objective of that is to enhance component’s independent functionality. To
evaluate an adequateness of the component design model, we use cohesion and
coupling metrics altogether. For the independency of the components, compo-
nents should have as high-cohesion and low-coupling as possible. That is a gen-
eral and abstract standard for the cohesion and coupling. But there is not con-
crete standard to find out the appropriate of the component design model. To
use cohesion and coupling metrics collectively, we measure the independence of
a component. The independence is calculated by subtracting the coupling from
the cohesion. So, the independence of a component is normalized from –1 to 1,
two values is inclusive. If the independence of a component is a positive number
close to 1, we can judge a component to be an independent functional unit. And
if the independence of a component is a negative number close to -1, it is opposed
to that. Consequently, we can easily evaluate a component design model with
the independence metric.

If components have low-independency, we should make components have
high-independency by the component redesigning process. The process makes
use of the clustering principle as grouping a similar thing. The process is as
follows and is showed in Figure 1, in the form of the Nassi-Shneiderman chart.

456 Byungsun Ko and Jainyun Park

Fig. 1. The component redesigning process.

Step 1. Selecting the component having the lowest independence, and then
splitting that.

First, select the component having the lowest independence. For the selected
component, calculate the operation similarity average. And then, partition the
operations having the lower operation similarity than average from that com-
ponent. Therefore, that component has been divided into several components.
The component cohesion, coupling and independence are calculated from the
operation similarity. If the operations having the operation similarity below the
average are partitioned from the component, the cohesion will be stronger and
the coupling will be weaker. Therefore, the independence of the component will
be stronger.

Step 2. Combining components that are alike in the operation similarity for
creating new components.

The component is an independent functional unit. Hence, we can regard a
component as a group of operations. The operation similarity value about the
component takes an average the operation similarity of all the operations in
that component. If components having the alikeness in the operation similarity
are combined all together, the cohesion of a new made component will be high.
When combining components, we use the clustering principle. Consequently, the
new made components will have high-independence.

Step 3. Repeating the component redesigning process, until the new combined
component has the lowest independence.

The component redesigning process is repetitious. That is the consecutive
process, partition and combination according to the operation similarity. To
improve the cohesion of components, we separate the operations having the op-
eration similarity below the average. And then, we make the new component by
combining components having the similar operation similarity. We can find out
the component design model is whether good or not, by measuring the indepen-
dence of a component. If that component has the lowest independence among all
the components, we should split that component again. In this case, the same
step of component redesigning process is executed repeatedly, separation and
combination. So, we should stop the process of component redesigning.

Component Architecture Redesigning Approach Using Component Metrics 457

5 Experiments and Results

In this study, we have case study about the component architecture redesigning
approach using component metrics. We apply that to videotape lending system
in the reservation system domain. The videotape lending system provides that
the customer can search the information about videotape, rent and return that.

The initial component architecture of the videotape lending system is showed
in Figure 2. That system is consisted of three components, RentMgr component
managing the information about rent and return the videotape, CustomerMgr
component managing the information about customer, and TapeMgr compo-
nent managing the information about videotape or rent. The service offered by
each component is IRentMgt interface, IcustomeMgt interface and ITapeMgt
interface.

Figure 3 is CAOG of the initial component architecture. Now, we adapt the
component redesigning process to the initial component architecture. Figure 4
is the component architecture after adapting the component redesigning process
continuously. About the before and after component redesigning process, the
result of the measurement is like Figure 5. In conclusion, we can find out the
component redesigning process can upgrade the quality of the component design
model. Therefore, we can find out the usefulness of component metrics and
component redesigning process.

Fig. 2. The initial component architecture.

Fig. 3. CAOG of the initial component architecture.

Fig. 4. CAOG of the component architecture after redesigning process.

458 Byungsun Ko and Jainyun Park

Fig. 5. Improvement of component quality with the redesigning process.

6 Conclusion

In this study, we have studied the component architecture redesigning approach
using component metrics. And we have empirically evaluated the component
redesigning approach with a case study. In accordance with the measurement
result, we can improve the quality of the component design model the analysis
and design phase.

We expect several things through this study. The component metrics can
obtain the merits which reflect the measured and revaluated results of the com-
ponent’s quality in the component development more quickly. And, these com-
ponent metrics can be the method of forecasting the functional degree of in-
dependence, the facility of maintenance and the reusability of the component.
In addition to that, the suggested component redesigning process can make the
component design model have the high level reusability and cohesion, low level
complexity.

References

1. Clemens Szyperski, Dominik Gruntz, Stephan Murer: Component Software: Be-
yond Object-Oriented Programming. 2nd Edition, Addison-Wesley (2002)

2. Desmond F. D’Souza, Alan C. Wills: Object, Component and Framework with
UML: The Catalysis Approach. Addison Wesley (1999)

3. John Cheesman, John Daniels: Uml Components: a Simple Process for Specifying
Component-Based Software. Addison Wesley (2001)

4. Paul Allen: Realizing e-Business with Components. Addison-Wesley (2001)

5. George T. Heineman, William T. Councill: Component-Based Software Engineer-
ing: Putting the Pieces Together. Addison-Wesley (2001)

6. Stephen H. Kan: Metrics and Models in Software Quality Engineering. Addison-
Wesley (1995)

7. Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Laiten-
berger, Roland. Laqua, Dirk Muthig, Barbara Peach, Jurgen Wust, Jorg Zettel:
Component-Based Product Line Engineering with UML. Addison-Wesley (2002)
372-408

Component Architecture Redesigning Approach Using Component Metrics 459

8. Simon Moser, Vojislav B. Misic: Measuring Class Coupling and Cohesion: A For-
mal Metamodel Approach. 4th Asia-Pacific Software Engineering and International
Computer Science Conference, Hong Kong (1997) 31-40

9. Wei Li, Sallie M. Henry: Object-Oriented Metrics that Predict Maintainability.
Journal of Systems and Software, Vol.23, No.2 (1993) 111-122

10. Lionel C. Briand, Sandro Morasca, Victor R. Basili: Property-based Software En-
gineering Measurement. IEEE Transactions on Software Engineering, Vol.22, No.1
(1996) 68-86

11. Lionel Briand, John W.Daly, Jügen Wüst: A Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software Engineering, Vol.3,
Issue 1 (1998) 65-117

cjkim@otlab.ssu.ac.kr

escho@dongduk.ac.kr

↑↓

←

←
→

←
→

→

{jkweon,mcjmh,baik}@software.korea.ac.kr

shpark21@kookmin.ac.kr

•

•

•

∞

Σ

≤ ≤ ≤ ≤

Σ

α β

α β

→

→

3D Watermarking Shape Recognition System
Using Normal Vector Distribution Modelling

Ki-Ryong Kwon1, Seong-Geun Kwon2, and Suk-Hwan Lee3

1 Division of Digital Information Eng., Pusan Univ. of Foreign Studies,
55-1 Uam-dong, Nam-gu, Pusan, 608-738, Republic of Korea

krkwon@pufs.ac.kr
2 R&D Group 3, Mobile Communication Division,

Information & Communication Business,
Samsung Electronics Co., LTD, Republic of Korea

seonggeun.kwon@samsung.com
3 School of Electrical Engineering and Computer Science, Kyungpook National Univ.,

1370, Sankyuk-dong, Buk-gu, Daegu, 702-701, Republic of Korea
skylee@m80.knu.ac.kr

Abstract. We developed the shape recognition system with 3D wa-
termarking using normal vector distribution. The 3D shape recognition
system consists of laser beam generator, linear CCD imaging system,
and digital signal processing hardware and software. 3D Watermark algo-
rithm is embedded by 3D mesh model using each patch EGI distribution.
The proposed algorithm divides a 3D mesh model into 4 patches to have
the robustness against the partial geometric deformation. Plus, it uses
EGI distributions as the consistent factor that has the robustness against
the topological deformation. To satisfy both geometric and topological
deformation, the same watermark bits for each subdivided patch are em-
bedded by changing the mesh normal vectors. Moreover, the proposed
algorithm does not need the original mesh model and the resampling
process to extract the watermark. Experimental results verify that the
proposed algorithm is imperceptible and robust against geometrical and
topological attacks.

1 Introduction

Many digital watermarking schemes have recently been proposed for copyright
protection and other application due to the rapid growing demand for multime-
dia data distribution. Watermark designing issues include detection robustness,
detection reliability, imperceptibility, and capacity. Recently, 3D geometric mod-
els, such as 3D geometric CAD data, MPEG-4, and VRML, have been receiving
a lot of attention, such as, various 3D watermarking algorithms have also been
proposed to protect the copyright of 3D geometric data [1–5]. Ohbuchi et al.
[6,7] proposed an algorithm that adds a watermark to a 3D polygonal mesh in
the mesh spectral domain. However, this algorithm is not robust against attacks
that alter the connectivity of meshes, such as mesh simplification and remeshing.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 481–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

482 Ki-Ryong Kwon, Seong-Geun Kwon, and Suk-Hwan Lee

Beneden et al. [8] also proposed an algorithm that adds a watermark by mod-
ifying the normal distribution of the model geometry. Although this algorithm
is robust against the randomization of points, mesh altering, and polygon sim-
plification, it is not robust against cropping attacks, as the normal distribution
is calculated for the entire model. Kanai et al. [9] proposed a watermarking al-
gorithm for 3D polygons using multiresolution wavelet decomposition. Yet, the
application is restricted to a certain topological class of mesh, as the wavelet
transform can only be applied to 4-to-1 subdivision connectivity schemes. How-
ever, this algorithm requires a complex resampling process of a suspect mesh in
order to obtain a mesh with the same geometry, yet with a given connectivity.

In this paper, we proposed the 3D watermarking schemes of 3D shape recogni-
tion system using the normal vector distribution. This 3D watermarking system
implements hardware and software of digital signal processing parts of 3D shape
recognition system. 3D watermark algorithm is embedded by 3D mesh model
using each patch EGI distribution. The proposed algorithm divides a 3D mesh
model into 4 patches to have the robustness against the partial geometric attacks
and topological deformation. To satisfy both geometric and topological attacks,
the same watermark bits for each subdivided patch are embedded by changing
the mesh normal vectors. Moreover, the proposed algorithm does not need both
the original mesh model and the resampling process to extract the watermark.
Experimental results verify that the proposed algorithm is imperceptible and
robust against geometrical and topological attacks.

2 The Proposed 3D Watermarking Algorithm

A block diagram of the proposed 3D watermark embedding algorithm of 3D
shape system is shown in Fig. 1. The vertices and connectivity of the 3D mesh
are entered from the scanned 3D shape system, then the coordinate values of
the vertices are changed by the watermark algorithm. The center points of the
patches and order information of the patch EGIs are then needed to extract the
watermark.

Fig. 1. The block diagram of the proposed embedding watermark algorithm.

3D Watermarking Shape Recognition System 483

2.1 Watermark Embedding

Patch Division of 3D Model. The 3D mesh model is divided into 4 patches
Pi∈[1,4] using a distance measure. Above all, the initial center points Ii∈[1,4] are
specified as the points with the maximum distance in the direction of 4 unit
vectors ±x, ±y, and ±z from the origin and considered as the respective center
points of 4 patches. Then, all the vertices v are clustered into one patch Pi

Pi = {v : d(v, Ii) < d(v, Ij), allj �= i, 1 ≤ i, j ≤ 4} (1)
where d(v, Ii) = ||v − I||2

which has the minimum distance among the initial center points I. After calcu-
lating the center of the clustered vertices for each patch, I are updated to the
new center point. Then, the clustering and updating process is iterated until
the condition |Dm−1 − Dm|/Dm ≤ 10−5 is satisfied, where m is the iteration
number and Dm is expressed as Dm =

∑4
i=1

∑
v∈Pi

||Ii − v||2. Fig. 2 shows the
patches into which the face model was divided. Pi∈[1,4] represent the patches in
the direction of the 4 unit vectors ±x, ±y, ±z respectively. The meshes are then
divided into the patches that include their vertices. In the case where meshes
have vertices that are divided into different patches at the boundary of each
patch, these meshes are not excluded from the patch EGI.

Patch EGI. The normal distribution of each patch is represented by an ori-
entation histogram, called an Extended Gaussian Image (EGI). In the current
paper, the unit sphere is divided into 240 surfaces that have the same area as
shown in Fig. 3.

The respective patch EGIs Pi∈[1,4] are obtained by mapping the mesh normal
vectors in Pi∈[1,4] into the surface that has the closest direction among the 240
surfaces. To calculate a normal vector with a consistent direction, the vector of
the vertex at the patch center point I is used without referring to the origin of
the entire model. Thus, the unit normal vector −→n ij and area Aij for the j-th
mesh surface in are calculated as −→n ij = (Iiv1 − Iiv2) × (Iiv1 − Iiv3)/||nij||2,
Aij = (Iiv1 − Iiv2)× (Iiv1 − Iiv3)/2.

The normal vector −→n for each patch is mapped into bins B = {Bi|0 ≤ i ≤
240} on the unit sphere divided into 240 surfaces. Thus, −→n is mapped into bin

Fig. 2. The divided mesh model into 4 patches.

484 Ki-Ryong Kwon, Seong-Geun Kwon, and Suk-Hwan Lee

Fig. 3. Unit sphere discretized into 240 cells with the same area.

Bi with the smallest angle among the angles between −→n and the unit normal
vector of bin

−−→
BC;

Bi = {−→n : ||−−→BCi · −→n < ||−−→BCj · −→n all j �= i, 1 ≤ i, j ≤ 240} (2)

The maximum value θm of
−−→
BCi · −→n is half the angle between the

−−→
BCs of the

neighborhood bins as shown in Fig. 4. As −→n around θm can be mapped into a
different bin after being attacked, it is excluded from the EGI. Thus, only −→n
within a certain range is selected as follows;

0 ≤ cos−1(
−−→
BCi · −→n) ≤ θmax, θmax < θm (3)

The length of Bi is the sum of area A for all the meshes that are mapped into
Bi. There are 240 bins Bj = {Bji|0 ≤ i ≤ 240} in the j-th patch EGI

The watermark, a 1-bit random sequence, is embedded in the ordered B of
PE. When the 1-bit watermark sequence of n length is embedded, the normal
vectors for all the meshes that are mapped into 4n bins are changed according
to the watermark bit allocated to each bin. The j-th watermark wj (1 ≤ j ≤ N)
is embedded into the j-th ordered Bijs (1 ≤ j ≤ 4) in each PE, as shown in
Fig. 5. The extraction of the watermark requires the ordered information of PE.

Fig. 4. Angle range where mesh normal vector −→n can be mapped into i-th bin Bi.

3D Watermarking Shape Recognition System 485

Fig. 5. Embedding watermark bit into the high ranked cells per patch EGI PE.

Embedding of Watermark. All the normal vectors in the selected bin are
changed according to the watermark bit. To change a normal vector, the position
of the vertex needs to be changed. Yet, if the position of a vertex is changed, the
normal vectors of all the meshes connected to this vertex will also be changed.
Thus, it is important to identify the position of a vertex, as the normal vectors
of all the meshes connected to this vertex will be changed according to the
watermark bit of the bin that they are mapped into. Fig. 6 (a) shows 4 meshes,
Si∈[1,4] and 4 vertices, valence(v) connected to vertex v. After calculating the
patch Pi that each mesh Si is divided into and the bin into which the normal
vector −→n of its mesh is mapped in PEi of Pi, the watermark bit allocated in its
bin is matched. Then, vertex v is changed to the optimum position that entirely
satisfies the watermark bits of each mesh Si∈[1,4] within the search region of its
vertex.

The optimum position is identified for all the vertices that satisfy the cost
measure for the condition of watermark embedding within the search region. To
be invisible, the search region for changing the position of a vertex must be below
the value of each coordinate in all the vertices connected to the current vertex.
Thus, the search regions for each coordinate of the current vertex v = (x, y, z)
are x ± "x, y ± "y and z ± "z; "x = 0.5 × min|x − vi

x|vi∈valence(v), "y =
0.5 × min|y − vi

y|vi∈valence(v), "z = 0.5 × min|z − vi
z |vi∈valence(v). valence(v)

(a) (b)

Fig. 6. (a) 4 meshes and 4 vertices that connected in vertex (b) 2 Step process in step
algorithm to identify optimum vertex.

486 Ki-Ryong Kwon, Seong-Geun Kwon, and Suk-Hwan Lee

represents all the vertices that are connected to the current vertex v and vx, vy,
and vz are the x, y, and z coordinate values of valence(v), respectively. The step
algorithm is used to identify the optimum vertex within the search region. In the
1-th step, 27 positions for the vertex v = {(x, y, z)|x ∈ {x−"x, x, x−"x}, y ∈
{y −"y, y, y −"y}, z ∈ {z −"z, z, z −"z} are selected for the initial search.
This means that the normal vector direction of all the meshes mapped into
Bi are either moved toward the

−−→
BCi (θwi = 0) or further away from the

−−→
BCi

(θwi = θmax), as shown in Fig. 4. Then, "x, "y, and "z are decreased by half
as shown in Fig. 6 (b). In the next step, the vertex v′ is updated through the
above process, which is performed in 3 iterations.

2.2 Extraction

The watermark can still be extracted from a watermarked model that has been
attacked by connectivity altering, such as remeshing and simplification. First, the
normal vector and its EGI distribution are calculated after dividing the original
model into 4 patches based on the known center point I of each patch. Using
the location information obtained from the EGI distribution of each patch with
watermark embedding, the watermark can be extracted based on the average
difference of the angle between all the normal vectors mapped into each bin and
the bin center point. The watermark wij of the Bij bin with a j-th length for the
i-th patch is extracted as 1, if 0 ≤ θij ≤ θth, otherwise, it is extracted as 0. θij

is represented as θij = 1/N
∑N

k=0 cos−1|−−→BCi · −→n k| where N equals the number
of all the mesh normal vectors projected into the Bij bin. A watermark decision
of 1 bit is performed based on the wij obtained from the 4 patches. Namely, wj

is expressed as wj = INT (1/4
∑4

i=1 wij + 0.5).

3 Experimental Results

The practical picture of 3D shape recognition system and the operating software
menu are shown in Fig. 7. VRML face model extracted in 3D shape recognition
system has 128,000 vertices and 254,562 faces. The 3D VRML data of the face
model was used to evaluate the robustness of the proposed algorithm against
geometrical and topological attacks. The experiment used a 1-bit watermark
with a 50 length WN=50 generated by a Gaussian random sequence. Therefore,
each watermark was embedded into 50 bins per patch (total 200 bins in a model).
θm, half the angle between two bins in the neighborhood, was calculated as 10.27
degrees. The maximum angle θmax that the normal vector could be mapped into
a bin was experimentally determined as 8.6 degrees, while the threshold θth

to extract the watermark was experimentally determined as 4.8 degrees. The
original model and watermarked model are shown in Fig. 8 (a) and (b), clearly
demonstrating the invisibility of the watermark.

To evaluate the robustness of the proposed algorithm, the watermarked model
was attacked by mesh simplification, cropping, and additive random noise. The
results are shown in Table 1, where the numbers of bin bit errors indicate the

3D Watermarking Shape Recognition System 487

(a) (b)

Fig. 7. (a) The 3D shape recognition system and (b) The operating program menu.

Fig. 8. (a) Original face model, (b) watermarked model, (c) mesh simplified to 50%,
and (d) cropped (c) model.

number of bins with a bit error among the 200 watermarked bins of all patches.
Plus, the BEP of a bin bit indicates the percentage of the number of bin bit errors
in 200 bits. Although bit errors due to attacks did occur in some watermarked
bins, the watermark still remained in each patch.

The watermarked model was attacked with remeshing and simplification
using MeshToSS [10]. However, the watermark remained until the model was
simplified to 10% of the original model vertex. In addition, 68% of the water-
mark remained until the model was simplified to 70% of the vertex. Random-
ization of a vertex was performed, where vertex sampled randomly was added
to vα × uniform(). The modulation factor α was 0.008 and uniform() was a
uniformly random function of [-0.5 0.5]. In table, 50% and 100% of random noise
indicate the percentage of the number of vertices that were randomly sampled
to add random noise. In both cases, all watermark remained. In the case of crop-

488 Ki-Ryong Kwon, Seong-Geun Kwon, and Suk-Hwan Lee

Table 1. Experimental results of robustness against various attacks.

Proposed algorithm

Attacks # of bin
bit error

BEP of bin
bit [%]

of
watermark

bit error

BEP of
watermark

bit [%]

Simplify

115,200 vertex (10%) 0 0 0 0

89,600 vertex (30%) 19 95 6 12
64,000 vertex (50%) 34 17 9 18

38,400 vertex (70%) 68 34.5 16 32

Random noise 50% 0 0 0 0

Random noise 100% 2 1 0 0

Remeshing 0 0 0 0

Cropping 25 12.5 3 6

Simplify (50%) + Cropping 54 27 21 42

ping, although there were some patches that had no vertices, all the watermarks
could be extracted from the other patches. Plus, in a cropped model with 50%
of the vertices, 64% of the watermark still remained.

4 Conclusions

We proposed the 3D watermarking schemes of 3D shape recognition system us-
ing the normal vector distribution. A 3D watermarking algorithm was presented
that embeds a watermark into the normal vector distributions of each patch.
In the proposed algorithm, the same watermark bit sequence is embedded in 4
patch EGIs of a 3D model, thereby making the watermark robust to geometri-
cal and topological deformation. Invisibility is also improved, as the watermark
is embedded based on identifying the optimum position of a vertex using a
step-searching algorithm within the search region of each vertex. Moreover, the
proposed algorithm does not need the original model to extract the watermark
or a resampling process. Experimental results confirmed that the proposed algo-
rithm is imperceptible as well as robust to geometrical and topological attacks.
Also, as this result, this paper presented possibility of watermark embedding in
3D shape cognition system.

Acknowledgements

This work was supported by grant No. (R01-2002-000-00589-0) from the Basic
Research Program of Korea Science & Engineering Foundation.

3D Watermarking Shape Recognition System 489

References

1. S. H. Lee, T. S. Kim, K. R. Kwon, and K. I. Lee.: 3D Polygonal Meshes Watermark-
ing Using Normal Vector Distributions. International Conference on Multimedia
& Expo(ICME2003), Vol. 3. (2003) pp. 105-108

2. R. Kwon, S. H. Lee, T. S. Kim, K. S. G. Kwon, and K. I. Lee.: Watermarking for
3D polygonal meshes using normal vector distributions of each patch. International
Conference on Image Processing(ICIP2003). (2003)

3. E. Praun, H. Hoppe, and A. Finkelstein.: Robust Mesh Watermarking. SIGGRAPH
99, (1999) pp. 49-56

4. M. G. Wagner: Robust Watermarking of Polygonal Meshes. Geometric Modeling
& Processing 2000, pp. 201-208, Apr. 2000.

5. B-L. Yeo and M. M. Yeung: Watermarking 3D Objects for Verification. IEEE
CG&G, pp. 36-45, Jan./Feb. 1999.

6. R. Ohbuchi, H. Masuda, and M. Aono.: Watermarking Three-Dimensional Polygo-
nal Models Through Geometric and Topological Modification. IEEE JSAC, (1998)
pp. 551-560

7. R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama.: Watermarking 3D
Polygonal Meshes in the Mesh Spectral Domain. Graphics Interface 2001, (2001)
pp. 9-17

8. O. Benedens.: Geometry-Based Watermarking of 3D Models. IEEE CG&A, (1999)
pp. 46-55, Third Information Hiding Workshop. (1999)

9. S. Kanai, H. Date, and T. Kishinami.: Digital Watermarking for 3D Polygons
using Multiresolution Wavelet Decomposition. Sixth IFIP WG 5.2 GEO-6, (1998)
pp. 296-307

10. T. Kanai, MeshToSS Version 1.0.1,
http://graphics.sfc.keio.ac.jp/MeshToSS/indexE.html

{bawooi,jang}@korea.ac.kr

totalsol@mail.mjc.ac.kr

++=
+=

+==

−

=

−

=

−

=

−

==

−

=

−

=

−

×=

phdkss@sys.info.eng.osaka-cu.ac.jp

jhdkim@chosun.ac.kr

××
+

×
+

××

()
−

−−=

−

()
()

()
()

[]

==⋅=

⋅=

⋅+++++=
−
−=

−
−=

=

−

−

×

()
()

===

−⋅+−⋅+=

+−⋅+−⋅⋅+=

++=

−−

−−

−−

α
α

α α

αα
−=−=

{ }=

α

+

+

++

α

−

−

−+

−+

≤∀

−=
=

−=
≤

=

=

{ }=

=−=

σ

=

=σ

σ σ σ σ

σ
σ

σ±

<

[]−
=

−

=

−

=

×

= = []
=

−=

α
α

α α

°

Data Aggregation for Wireless Sensor Networks
Using Self-organizing Map�

SangHak Lee1,2 and TaeChoong Chung2

1 Ubiquitous Computing Research Center, Korea Electronics Technology Institute,
270-2, SeoHyun-Dong, PunDang-Gu, SungNam-Si, KyungGi-Do, 463-771, Korea

shlee@keti.re.kr
2 Department of Computer Engineering, KyungHee University,

1, SeChen-Ri, GiHeung-Eup, YongIn-Si, KyongGi-Do, 449-701, Korea
tcchung@khu.ac.kr

Abstract. Sensor Networks have recently emerged as a ubiquitous com-
puting platform. However, the energy constrained and limited computing
resources of the sensor nodes present major challenges in gathering data.
In this work, we propose a self-organizing method for aggregating data in
ad-hoc wireless sensor networks. We present new network architecture,
CODA (Cluster-based self-Organizing Data Aggregation), based on the
Kohonen Self-Organizing Map to aggregate sensor data in cluster. Before
deploying the network, we train the nodes to have the ability to classify
the sensor data. Thus, it increases the quality of data and reduces data
traffic as well as energy-conserving. Our simulation results show that
CODA increases the accuracy of data than traditional aggregation of
database system. Finally, we show a real-world platform, TIP, on that
we will implement the idea.

1 Introduction

With the advancement of low-cost processor, memory, and radio technologies,
it becomes possible to build inexpensive wireless sensor nodes. Although these
nodes are not so powerful, it is possible to build a high-quality, fault-tolerant
sensor network by using hundreds or thousands of them. Wireless sensor net-
works are assumed to be consists of tens or hundreds of thousand of energy
constrained sensor nodes. Many researches have proved that wireless communi-
cation is more energy consuming in transmitting than computation of data [1].
The key challenge in such data gathering and routing is conserving the sensor’s
energies, so as to maximize their lifetime.

The difference between sensor network and standard temperature sensor is
the ability to interconnect nodes intelligently in cluster and to aggregate data
collectively. Instead of improving the quality of the individual sensor(s), the
quantity is increased in distributed sensing. Benefits of this approach have been
� This research has been partially supported by Ubiquitous Autonomic Computing

and Network Project,the Ministry of Science and Technology (MOST) 21st Century
Frontier R&D Program in Korea.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 508–517, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Data Aggregation for Wireless Sensor Networks Using Self-organizing Map 509

mentioned early on in sensor fusion literature: (1) redundancy in sensors leads
to a more robust system since faulty sensors have little effect on the output, (2)
distributed sensors have a higher chance to capture relevant aspects because of
their spatial spreading, and (3) the cost of producing many sensor modules that
sense concurrently is considered to be smaller. These sensors can be produced
in smaller sizes because high precision is not a major factor for this application.
However, distributed self-clustering is a difficult challenge. We will concentrate
in this paper on clustering data originated from set of sensors, concurrently oper-
ating in the same environment. A prime requirement is that the clustering should
be based on data and done in a decentralized way since it is being implemented
on a hardware platform based on microcontrollers with limited memory.

Some studies have been done on topics related to method for building clus-
tering and finding aggregation function. However, they did not use data but
geometrical location and distance between nodes. In this paper, we present a
new efficient method for clustering node. The key idea in our algorithm is first
to cluster nodes using unsupervised learning, the Kohonen Self-Organizing Map
(SOM) and then to combine or partition the clusters. Our proposed algorithm
increases the quality of data. The rest of the paper is organized as follows: in
section II, related works, we survey the previous works related data clustering
and aggregation. In section III, we assume the model of network and define the
problem. Section IV present the CODA (Cluster-based self-Organizing Data Ag-
gregation) protocol and argues if it satisfies its goals. Section V discusses detailed
experimental results. Finally, Section VI gives concluding remarks and directions
for future work.

2 Related Works

In this section, we discuss related works from both sensor network and unsuper-
vised learning communities. There are already a lot of works related to cluster for
vector quantization. We review sensor network routing, aggregation, and data
classification algorithm to apply the Kohonen SOM to wireless sensor network.

Since data generated in a sensor network is too much for an end-user to
process and data from close sensors is highly correlated, methods for combining
data into a small set of meaningful information is highly required. Several studies
have been made on aggregation or clustering. Most of the previous work [3–6] in
the related area focus at reducing the energy expended by the sensors during the
process of data gathering. LEACH [4] analyzes the performance of cluster-based
routing mechanism with in-network data compression. Their network architec-
ture is shown in Fig. 1 (c). LEACH leverages balancing the energy load among
sensor s using randomized rotation of cluster heads. Even though they achieve to
prolong the lifetime of network, they do not specify how flows and opportunities
for aggregation would be activated. In PEGASIS [5], sensors form chains so that
each node transmits and receives from a nearby neighbor. Gathered data moves
from node to node, gets aggregated and is eventually transmitted to the base sta-
tion. In [6], the authors propose a hierarchical scheme based on PEGASIS that
reduces the average energy and delay incurred in gathering the sensed data. In

510 SangHak Lee and TaeChoong Chung

(a) Single hop without clustering. (b) Multi-hop without clustering.

(c) Single hop with clustering. (d) Multi-hop with clustering.

Fig. 1. This shows a figure of different types of network architecture.

HEED [9], they shows scheme of data aggregation (Clustering) and single hop
vs. multi-hop routing in wireless sensor network. Our method, CODA, is based
on Fig. 1 (c) or (d).

Fig. 1 shows that since data gathering in sensor network without cluster-
ing may result in many packets, thus increasing the network traffic, clustering
mechanism is needed.

Directed diffusion [4] is based on a network of nodes that can coordinate to
perform distributed sensing of an environmental phenomenon. Such an approach
achieves significant energy savings when intermediate nodes aggregate responses
to queries. The SPIN protocol [5] uses meta-data negotiations between sensors
to eliminate the transmission of redundant data through the network.

In related work, Bhardwaj et al. [7] derive upper bounds on the lifetime of
a sensor network that collects data from a specified region using some energy-
constrained nodes. Krishnamachari et al. [2] already showed that gains due to
data aggregation are obtained theoretically. Equation (1) shows the number of
data-centric transmission to address-centric transmission ratio.

lim
d→∞

ND

NA
=

1
k

(1)

ND is the total number of transmissions required for the optimal Data-Centric
protocol; NA is the total number of transmissions required for the optimal
Address-Centric protocol; d is the distance of the shortest path from source to
the sink; k is the number of sources. They examined three suboptimal schemes;
Center at Nearest Source (CNS), Shortest Paths Tree (SPT) and Greedy In-

Data Aggregation for Wireless Sensor Networks Using Self-organizing Map 511

cremental Tree (GIT). Although studies have been made on finding optimal
aggregation tree, what seems to be missing is a method to extract and encode
knowledge from uncertain data. Madden et al. [8] describe the TinyOS oper-
ating system that can be used by an ad-hoc network of sensors to locate each
other and to route data. The authors discuss the implementation of five basic
database aggregations, i.e. COUNT, MIN, MAX, SUM, and AVERAGE, based
on the TinyOS platform can demonstrate that such a generic approach for ag-
gregation leads to significant power (energy) savings. However, this method also
has to transmit aggregated data to base station periodically.

In other point of view, gathering sensor data is classifying multi-input sig-
nals into a few classes. Thus, we examine candidates suited well for clustering
algorithms. The Kohonen Self-Organizing Map (SOM) [12] has a similar char-
acteristic: sensor nodes (referred to as neurons) are recruited topologically for
tasks depending on the sensory input. It is commonly classified as a neural net-
work, and more specifically a winner-takes-all competitive algorithm, since the
units compete with each other for specific tasks. We adopt the Kohonen SOM to
cluster and aggregate sensor data. In Next Section, we define the network model
and requirement metrics.

3 Problem Statement

In this section, we assume the network model and propose problem to be ad-
dressed. Our goal of research is to find an algorithm to cluster sensor network
for transmitting data efficiently without degrading the quality of data.

There are various models for sensor networks. In this work we mainly consider
a sensor network environment where:

– Each node periodically senses its nearby environment and would like to send
its data to a base station located at a fixed point.

– Sensor nodes are homogeneous and energy constrained.
– Sensor nodes know their location.
– Sensor nodes are quasi-stationary while base station has fixed location.
– Sensor nodes control communication radio range dynamically, but maximum

range is limited.
– Data fusion or aggregation is used to reduce the number of messages in the

network. We assume that combining n identical packets of size k results in
one packet of size k instead of size nk.

The aim is to efficiently transmit of all the data to the base station so that
the lifetime of the network is maximized in terms of rounds, where a round is
defined as the process of gathering all the data from sensor nodes to the base
station regardless of how much time it takes. Also, it requires also no degrading
quality of data.

In TEEN [10], they propose a formal classification of sensor network on the
basis of their mode of functioning and the type of target application. We will
mention their definition to achieve a better understanding of the process of sensor
network.

512 SangHak Lee and TaeChoong Chung

Proactive Networks: The nodes in this network periodically switch on their
sensors and transmitters, sense the environment and transmit the data of inter-
est. Thus, they provide a snapshot of the relevant parameters at regular intervals.
They are well suited for applications requiring periodic data monitoring.

Reactive Networks: In this scheme the nodes react immediately to sudden
and drastic changes in the value of a sensed attribute. As such, they are well
suited for time critical applications.

Most of sensor network applications may have both properties. Since nodes
are deployed to sense overlapped region, closer sensor may get more correlated
data. Sensor network requires method to detect not each node’s data, but aggre-
gated data accurately in any case. There are two kinds of aggregation method;
(1) centralized aggregation (2) localized aggregation. In centralized aggregation,
all nodes transmit data to sink, and then sink aggregates. On the other hand,
localized aggregation has sensors in local area that collaborate to cluster data,
and send aggregated data to sink. Since the centralized aggregation scheme re-
quires all of the data, thus increasing traffic, localized aggregation seems to be
more energy efficient than centralized aggregation. However, there may be a
possibility of in degrading quality of information.

Thus, we present an algorithm, CODA. In this algorithm, we regard a node
as neuron, or agent, since each node has a small but sufficient microcontroller,
memory, and wireless transceiver. Thus a node can either be a cluster head
or a source. And they can process signal cooperatively. Finally, each node can
memorize the learning algorithm and the results. The algorithm will be able to
achieve three primary goals: (1) clustering sensor network efficiently based on
data, (2) prolonging network lifetime by reducing the traffic, and (3) increasing
accuracy of aggregated data by using unsupervised learning.

4 CODA (Cluster-Based Self-organizing
Data Aggregation)

In this section, we propose a protocol which train sensor node using SOM (Self-
Organizing Map), re-cluster network based on data, and transmit only aggre-
gated data to sink node.

First, we will take a look at the Kohonen Self-Organizing Map. In general,
SOM are unsupervised learning systems employed to map high dimension inputs
to a lower dimension output where similar inputs are mapped near each other.
The essential constituents of feature maps are as follows [11]:

– an array of neurons that compute simple output functions of incoming inputs
of arbitrary dimensionality

– a mechanism for selecting the neuron with the largest output
– an adaptive mechanism that updates the weights of the selected neuron and

its neighbors

The training algorithm proposed by Kohonen for forming a feature map is sum-
marized as follows. Each unit j has its own prototype vector wj , being a local

Data Aggregation for Wireless Sensor Networks Using Self-organizing Map 513

storage for one particular kind of input vector that has been introduced to the
system.

Step 1) Initialization: Choose random values for the initial weights wj(0)
Step 2) Winner Finding: Find the winning unit j∗ at time t, using the

minimum-distance Euclidean criterion

j∗ = arg min
j
‖xj(t)− wj‖ , j = 1, ..., N (2)

where xj(t) represents the input pattern, N is the total number of unit, and ‖·‖
indicates the Euclidean norm.

Step 3) Weights Updating: Adjust the weights of the winner and its neighbors,
using the following rule:

wj(t + 1) = wj(t) + αNj∗(t)(xj(t)− wj(t)) (3)

where α is a positive constant and Nj∗(t) is the topological neighborhood func-
tion of the winner unit j∗ at time t. The neighborhood function is traditionally
implemented as a Gaussian (bell-shaped) function:

Nj∗(t) =
1√
2πσ

e−(j∗−j)2/2σ2
(4)

with σ a parameter indicating the width of the function, and thus the radius in
which the neighbors of the winning unit are allowed to update their prototype
vectors significantly. It should be emphasized that the success of the map for-
mation is critically dependent on how the values of the main parameters (i.e.,
α and Nj∗(t)), initial values of weight vectors, and the number of iterations
are prespecified. The Kohonen SOM mainly has implementations based on a
single-processor, centralized method. We implement the Kohonen SOM simula-
tor on PC. Fig. 2 shows the graphical network map before training (a) and after
training (b).

There are some different requirements that we have to modify from the orig-
inal Kohonen SOM. Since sensor network may consist of hundreds or thousands
of nodes, it is difficult to implement in centralized method. Although inputs for

(a) The initial map. (b) After 1,000 epoch.

Fig. 2. (a) The map based on initial random weight vector and (b) the map after 1,000
iterations running.

514 SangHak Lee and TaeChoong Chung

each of the units may contains a small magnitude of difference since data are
collected from the same region, it is important for us to recognize the difference
in the sensed data.

In a traditional SOM, inputs for all units are exactly the same. This situa-
tion is already addressed in [12]. They used a fixed number of units to percept
distributedly the sensed environment. Thus, we implement the Kohonen SOM
algorithm and weight value on each sensor platform. Our idea is to classify the
sensed data as well as to re-cluster the network using the Kohonen SOM. We
choose a cluster head which manages the communication schedule, merges and
partitions the clusters. There are geographical clusters immediately after deploy-
ing sensor network and then clusters are merged and partitioned based on data.
Data-centric cluster scheme can achieve the accuracy of aggregated data and
thus make user to become aware the situation of sensor field.

(a) Geographical Clustering and Data. (b) Data-Centric Re-Clustering and Data.

Fig. 3. (a) geographical clustering and (b) re-clustering based on data classified by the
SOM.

In original SOM, each unit starts out with initial random weight wj . In
contrast, our strategy is to make node to learn enough, and then deploy the
node with learned weight w′

j . Sensor node may regard as an agent from the
viewpoint of artificial intelligence. How well the node is trained off-line will
decide the quality of data, the lifetime of network, adaptability of node and the
level of collaboration on-line.

We design two different method of clustering: merging and partitioning. Ini-
tial cluster head node schedules local data gathering period. Each non-cluster
head node transmits data to head node in their scheduled time. Then, head node
identifies the winner, update prototype vector, and calculates errors. Partition-
ing algorithm is carried out after the time for sensor to aggregate values has
expired. Merging algorithm between neighbor clusters which have similar data
is activated.

Partitioning Algorithm: Partitioning is carried out basically based on error
value. Continuous higher error means two cases: one is abrupt change in the
environment. Another is that there are different types of data in some units.
Partitioning algorithm is activated in the second case. Since cluster head node
knows each node’s location and error value, it can partition the nodes based on
error value.

Data Aggregation for Wireless Sensor Networks Using Self-organizing Map 515

Merging Algorithm: After partitioning internal cluster, merging algorithm
between close neighbor clusters is executed. Each cluster head broadcast their
local aggregated sensor value, and then the two clusters are merged in which
difference between their data is under certain threshold.

The quality of the network is based on the quality of the aggregated data set,
so the requirement of correlated level between clusters is varied in applications
and sensors. Thus, we don’t fix the threshold value and remain it as a design
factor.

5 Performance Evaluation

In this section, we evaluate the performance of the CODA algorithm via simula-
tions. We use a packet-level simulation to explore the performance of proposed
method. In our experiments we used two metrics: quality of data. The quality
of data in our research is brought from the definition of TiNA [13] as follows:

QoD =
1
T

T∑
t=1

100− δt (5)

In (5), error δt is over the Group-By query at time t. In case of querying the
network by Group, the network is expressed by {g1, ..., gn}, and exact and ag-
gregated values over measure attribute M in the group gi are mi and m

′
i. Then,

error in group gi is εi = |mi−mi
′ |

mi
× 100, the overall error is δ = 1

n

∑n
i=i εi.

In this work, we inspect whether data-centric adaptive clustering scheme
affect the quality of data. Thus we first take a look at the quality of data in
a cluster. There are five units in a cluster where they aggregate data using
different methods: MAX, MIN, AVERAGE and SOM. They sense different value
from the same event. We measured the difference between original values and
aggregated using light sensor. Fig. 4 shows difference between AVERAGE and

Fig. 4. Comparison the original data with the aggregated data in two cases of AVER-
AGE and SOM.

516 SangHak Lee and TaeChoong Chung

SOM aggregation. We exclude the MIN, MAX aggregation, since difference is
too high in case of that. Since the aggregation methods used in database system
have no knowledge in deciding if the heterogeneous data should be included in
one data set, it’s hard to partition the dataset. These simulation results verify
that clustering based on data is effective at aggregating data.

In order to run the CODA on real-world platform, we have made a small,
embedded sensor network node platform, called TIP (Tiny Interface for Phys-
ical World). The core of sensor module is an ATMEGA 128L microcontroller
clocked at 8 MHz, which offers 128Kbytes of flash memory and 4Kbyte of
SRAM/EEPROM. Fig. 5 represents the picture of Tiny Interface for Physical
World (TIP) from Korea Electronics Technology Institute (KETI).

Fig. 5. A TIP from KETI.

An RF stack provides wireless communication, at a maximum rate of 56
kbit/s. Two serial connectors are available for connecting the sensor module
to a PC. One of them is RS-232 serial port for data and another is USB for
ISP or JTAG. Current sensor options include: temperature, humidity, and light.
We use I2C connectors to get data from temperature and humidity, and read
the light sensor through ADC (Analog Digital Converter). We do not have yet
implemented the CODA on the TIP completely.

6 Conclusions and Future Work

In this paper, we present a self-organizing clustering method based on data clas-
sified by competitive learning neural network. Sensor networks have properties
in which geographically close nodes may have correlated data. Hence, clustering
network and aggregating data are positively necessary in wireless sensor net-
work. There is a trade-off between clustering and the quality of data. Although
clustering reduces the traffic and prolong the lifetime of network, it may degrade
the accuracy of data. Sensor network needs an efficient data aggregating method
which doesn’t degrade the quality of data.

We use the unsupervised self-organizing neural network, Kohonen SOM, to
map sensor data to context information. Our proposed algorithm, the CODA
clusters the network based on data after sensing the environment in certain

Data Aggregation for Wireless Sensor Networks Using Self-organizing Map 517

period of time and re-cluster the cluster by using the value aggregated. It works
well in increasing the quality of data. We will have to implement the CODA on
the real-world platform, TIP, and verify the results in real environment using
various sensors.

References

1. Dasgupta, K., Kalpakis, K., Namjoshi, P.: An Efficient Clustering-based Heuristic
for Data Gathering and Aggregation in Sensor Networks. Wireless Communications
and Networking (2003) 1948–1953

2. Krishnamachari, L., Estrin, D., Wicker, S.: The Impact of Data Aggregation in
Wireless Sensor Networks. Proc. of 22nd Int. Conference on Distributed Computing
Systems Workshops (2000) 575–578

3. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and
robust communication paradigm for sensor networks. Proc. of 6th ACM/IEEE
Mobicom Conference. Boston, Massachusetts, United States (2000) 56–67

4. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks. Proc. of 5th ACM/IEEE Mobicom
Conference. Seattle, Washington, United States (1999) 174–185

5. Lindsey, S., Raghavendra, C. S.: PEGASIS: Power Efficient Gathering in Sensor
Information Systems. Proc. of IEEE Aerospace Conference, Vol. 3. (2002) 1125–
1130

6. Lindsey, S., Raghavendra, C. S., Sivalingam, K.: Data Gathering in Sensor Net-
works using the Energy*Delay Metric. Proc. of IPDPS Workshop on Issues in
Wireless Networks and Mobile Computing (2001) 2001–2008

7. Bhardwaj, M., Garnett, T., Chandrakasan, A.P.: Upper Bounds on the Lifetime
of Sensor Networks. Proc. of International Conference on Communications (2001)
785–790

8. Madden, S., Szewczyk, R., Franklin, M. J., Culler, D.: Supporting Aggregate
Queries over Ad-Hoc Wireless Sensor Networks. Proc. of 4th IEEE Workshop on
Mobile Computing and Systems Applications (2002) 49–58

9. Younis, O., Fahmy, S.: Distributed Clustering in Ad-hoc Sensor Networks: A Hy-
brid, Energy-Efficient Approach. IEEE INFOCOM 2004 (2004)

10. Manjeshwar, A., Agrawal, D.: APTEEN: A Hybrid Protocol for Efficient Rout-
ing and Comprehensive information Retrieval in Wireless Sensor Networks. Int.
Parallel and Distributed Processing Symposium: IPDPS 2002 Workshops (2002)

11. Kohonen, T.: The self-organizing map. Proc. of the IEEE (1990) 1464–1480
12. Catterall, E., Laerhoven, K., Strohbach, M.: Self-organization in ad hoc sensor net-

works: an empirical study. Proc. of the eighth international conference on Artificial
life (2002) 260–263

13. Sharaf, M., Beaver, J., Labrinidis, A. Chrysanthis, P. K.: TiNA: A Scheme for
Temporal Coherency-Aware in-Network Aggregation. Proc. of the 3rd ACM in-
ternational workshop on Data engineering for wireless and mobile access (2003)
69–76

Feasibility and Performance Study
of a Shared Disks Cluster

for Real-Time Processing

Sangho Lee, Kyungoh Ohn, and Haengrae Cho

Department of Computer Engineering, Yeungnam University,
Gyungsan, Gyungbuk 712-749, Republic of Korea

hrcho@yu.ac.kr

Abstract. A great deal of research indicates that the shared disks (SD)
cluster is suitable to high performance transaction processing, but the
aggregation of SD cluster with real-time processing has not been inves-
tigated at all. By adopting cluster technology, the real-time services will
be highly available and can exploit inter-node parallelism. In this paper,
we investigate the feasibility of real-time processing in the SD cluster.
Specifically, we evaluate the cross effect of real-time transaction process-
ing algorithms and SD cluster algorithms with the simulation model of
an SD-based real-time database system (SD-RTDBS).

Keywords: Performance evaluation, cluster computing, real-time pro-
cessing, cache coherency, transaction processing

1 Introduction

There has been an increasing growth of real-time transaction processing appli-
cations, such as telecommunication system, stock trading, electronic commerce,
and so on. A real-time transaction has not only ACID properties of traditional
transactions but also time constraints of completing its execution before dead-
line [8]. The major performance metric for real-time processing is the percentage
of input transactions missing their deadlines.

A cluster is a collection of interconnected computing nodes that collaborate
on executing an application and presents itself as one unified computing resource.
Depending on the nature of disk access, there are two primary flavors of cluster
architecture designs: shared disks (SD) and shared nothing (SN) [14]. The SD
cluster allows each node to have direct access to all disks. In the SN cluster,
however, each node has its own set of private disks and only the node can directly
read and write its disks. The SD cluster offers many advantages compared to
the SN cluster, such as dynamic load balancing and seamless integration, that
make it attractive for high performance transaction processing. Furthermore, the
rapidly emerging technology of storage area networks (SAN) makes SD clusters
the preferred choice for reasons of higher system availability and flexible data
access. The recent parallel database systems using the SD cluster include IBM
DB2 Parallel Edition [5] and Oracle Real Application Cluster [13].

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 518–527, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Feasibility and Performance Study of a Shared Disks Cluster 519

Although there has been a great deal of independent research in real-time
processing and SD cluster, their aggregation has not been investigated at all.
By adopting cluster technology, it is possible to support highly available real-
time database services, which are the core of many telecommunication services.
Furthermore, the cluster can achieve high performance real-time transaction
processing by exploiting inter-node parallelism and reducing the amount of disk
I/O with judicious data caching.

In this paper, we investigate the cross effect of real-time transaction pro-
cessing algorithms and SD cluster algorithms with the simulation model of an
SD-based real-time database system (SD-RTDBS). The emphasis of this pa-
per is not to develop a new algorithm for SD-RTDBS, but to understand the
feasibility of SD-RTDBS over a wide range of real-time workload and system
parameters, and to identify the workload characteristics best suited for each al-
gorithm. Specifically, we explore the following issues about the relationship of
real-time transaction processing and SD cluster.

– Is the SD cluster feasible to the real-time transaction processing?
– How much of the SD cluster algorithm performs differently at real-time ap-

plications?
– How does the SD cluster affect the performance of real-time transaction

processing algorithms, especially concurrency control algorithm?

The remainder of this paper is organized as follows. Sect. 2 presents real-
time transaction processing algorithms on SD-RTDBS considered in this paper.
Sect. 3 describes a simulation model of SD-RTDBS and Sect. 4 analyzes the
experiment results. Concluding remarks appear in Sect. 5.

2 Real-Time Transaction Processing on SD-RTDBS

This section presents three classes of real-time transaction processing algorithms
to be considered for SD-RTDBS. They include cache coherency algorithm, trans-
action routing algorithm, and concurrency control algorithm.

2.1 Cache Coherency Algorithm

Each node in the SD cluster has its own buffer pool and caches database pages in
the buffer. Caching may substantially reduce the number of disk I/O operations
by utilizing the locality of reference. However, since a particular page may be
simultaneously cached in different nodes, modification of the page in any buffer
invalidates copies of that page in other nodes. This necessitates the use of a
cache coherency algorithm so that the nodes always see the most recent version
of database pages [2–4, 9].

The complexity of cache coherency scheme critically depends on the lock-
ing protocols. In case of the page locking, the cache coherency scheme is rather
simple. This is because different transactions cannot access a page with conflict-
ing modes simultaneously. On the other hand, if the record locking is used, the
cache coherency scheme becomes very complicated. This is due to the fact that

520 Sangho Lee, Kyungoh Ohn, and Haengrae Cho

different records of the same page could be concurrently updated at different
nodes. As a result, each node’s page copy is only partially up-to-date and the
page copy on disk may contain none of the updates (at first).

The record locking can reduce the lock conflict ratio; hence, it can support
well the traditional transaction processing applications where there are many
concurrent transactions. This is why most commercial products of SD cluster
implement the record locking [5, 13]. However, large amounts of message and
page transfer could occur in the record locking due to frequent lock requests and
maintaining cache coherency. Excessive page transfer also causes frequent disk
I/O for flushing log records [9]. This shortcoming of the record locking could
be particularly problematic in some real-time applications where the degree of
concurrency would not be so high. As a result, we have to analyze the effect
of lock granularity on the cache coherency algorithm under a wide variety of
real-time workloads.

2.2 Transaction Routing Algorithm

The key idea of the successful SD-RTDBS is to maximize inter-node parallelism
with minimal inter-node synchronization overhead. A font-end transaction router
may implement this idea with an efficient transaction routing. In the SD cluster,
if transactions referencing similar data are clustered together to be executed on
the same node (affinity node), then the buffer hit ratio should increase and the
level of interference among nodes due to buffer invalidation will be reduced. This
concept is referred to as affinity-based routing [11, 15, 16].

We consider two affinity-based routing algorithms: pure affinity-based routing
(PAR) [15, 16] and dynamic affinity-based cluster allocation (DACA) [11]. PAR
is a static algorithm in the sense that the affinity relationship between transac-
tion classes and nodes are fixed. While PAR is simple and easy to implement,
the deadline miss ratio of some transaction class must increase dramatically if
transactions of the class are congested. DACA can avoid overloading individual
node by making an optimal balance between the affinity-based routing and in-
discriminate sharing of load in the SD cluster. Specifically, DACA allocates more
affinity nodes for a congested transaction class and returns to the original state
if the congestion is resolved. Note that the affinity relationship is determined
dynamically. Furthermore, DACA can reduce the frequency of buffer invalida-
tions by trying to limit the number of affinity nodes allocated to a congested
transaction class if the load deviation of each node is not significant.

In traditional transaction applications, we have shown that DACA performs
better than PAR and other dynamic transaction routing algorithms [11]. In this
paper, we will investigate whether this result is still valid under the real-time
workloads where the performance metric is a deadline miss ratio and a system
applies a real-time concurrency control described in the next section.

2.3 Concurrency Control Algorithm

A concurrency control algorithm is required to maintain the database consistency
among concurrent transactions accessing the same data [10]. In real-time appli-

Feasibility and Performance Study of a Shared Disks Cluster 521

CPU

CPU

DISK DISK

CPU
Network

CPUCPU

CPUCPU

DISKDISK DISKDISK

CPUCPU
NetworkNetwork

Fig. 1. A simulation model of an SD-RTDBS.

cations, the algorithm also has to handle the priority inversion problem that
lower priority transactions block the execution of higher priority transactions.
It might degrade performance because urgent transactions cannot be executed
until blocking transactions of low priority complete. Authors in [1] proposed
two real-time concurrency control algorithms, wait promote locking (WP) and
high priority locking (HP). WP prevents the priority inversion by increasing the
priority of blocking transaction to be as high as that of blocked transactions
whenever a priority inversion occurs. On the other hand, HP aborts blocking
transactions of low priority if they cause the priority inversion.

Authors in [1] show that WP outperforms HP in real-time applications with
soft deadline. In firm deadline applications, authors in [6] show that HP per-
forms better than WP. However, both results are obtained from the centralized
database system model and they might not be hold in the SD cluster. The rea-
son is that (a) each node of the SD cluster can execute transactions concurrently
and the data conflict ratio would increase as a result, and (b) the performance
of concurrency control algorithm is affected by the underlying cache coherency
algorithm and transaction routing algorithm.

3 Simulation Model

To evaluate the feasibility of real-time processing in SD cluster, we have de-
veloped a simulation model of an SD-RTDBS using CSIM [12] discrete-event
simulation package. Fig. 1 shows the simulation model.

We model the SD cluster consisting of a single router and a global lock
manager (GLM) plus a varying number of nodes, all of which are connected via
a local area network. The router model consists of a transaction generator and a
routing manager. The transaction generator has a role to generate transactions,
each of which is modeled as a sequence of database operations. The routing
manager captures the semantics of a given transaction routing algorithm.

The model for each node consists of a buffer manager, which manages the
node buffer pool using an LRU policy, and a resource manager, which models

522 Sangho Lee, Kyungoh Ohn, and Haengrae Cho

Table 1. Simulation parameters.

System Parameters

CPUSpeed Instruction rate of CPU 1 GIPS

NetBandwidth Network bandwidth 100 Mbps

NumNode Number of computing nodes 1 ∼ 16

NumDisk Number of shared disks 20

MinDiskTime Minimum disk access time 0.01 sec

MaxDiskTime Maximum disk access time 0.03 sec

PageSize Size of a page 4096 bytes

RecPerPage Number of records per page 10

ClusterSize Number of pages in a cluster 10000

HotSize Size of hot set in a cluster 2000 pages

DBSize Number of clusters in database 8

BufSize Per-node buffer size 10000 pages

FixedMsgInst Number of instructions per messaging 20000

LockInst Number of instructions per locking 2000

PerIOInst Number of instructions per disk I/O 5000

PerObjInst Number of instructions for a DB call 15000

LogIOTime I/O time for writing a log record 0.005 sec

Transaction Parameters

TrxSize Transaction size (# of records) 10

SizeDev Transaction size deviation 0.2

UpdatePr Probability of updating a record 0.0 ∼ 0.8

MPL Number of concurrent transactions 40 ∼ 400

ClassNum Number of transaction classes 8

Locality Probability of accessing local cluster 0.8

HotPr Probability of accessing hot set 0.8

CPU activity and provides access to the shared disks and the network. For
each transaction, the transaction manager forwards lock request messages and
commit messages to the GLM. The disks are shared by every node.

The GLM has a role to perform the real-time concurrency control and the
cache coherency control. The real-time scheduler implements WP or HP. The
lock granularity is defined as a record or a page. Transactions wait on any
conflicting lock requests. They are aborted in case of either deadlock, prior-
ity inversion in HP, or missing their deadlines. The cache manager implements
ARIES/SD algorithm [9], which is a representative cache coherency algorithm
in the SD cluster.

Table 1 shows the simulation parameters for specifying the resources and
overheads of the system. Many of the parameter values are adopted from [3, 16].
The network manager is implemented as a FIFO server with 100 Mbps band-
width. The number of shared disks is set to 20, and each disk has a priority
queue of I/O requests. Disk access time is drawn from a uniform distribution
between 10 milliseconds to 30 milliseconds.

We model that the database is logically partitioned into several clusters. Each
database cluster has 10000 pages (40 Mbytes), and it is affiliated to a specific
transaction class. The number of classes (ClassNum) is set to 8. The transaction
parameter of Locality determines the probability that a transaction operation ac-
cesses a data item in its affiliated database cluster. The HotPr parameter models

Feasibility and Performance Study of a Shared Disks Cluster 523

“80-20 rule”, where 80% of the references to the affiliated database cluster go
to the 20% of the database cluster (HotSize). We refer the 20% of the database
cluster as hot set, and the remaining part as cold set. The average number of
records accessed by a transaction is determined by a uniform distribution be-
tween TrxSize ± TrxSize × SizeDev. The parameter UpdatePr represents the
probability of updating a record. The processing associated with each record,
PerObjInst, is assumed to be 15000 instructions.

For a transaction, T , we determine its deadline (DT) as follows [6]: DT = AT

+ SF × ET , where AT and ET are the arrival time and estimated execution time
of T , respectively. SF is a slack factor that provides control over the tightness
of deadlines. We set the value of SF to 4 like [6]. ET is computed as follows: ET

= NumReadT × (PerObjInst + MaxDiskTime) + NumWriteT × PerObjInst,
where NumReadT and NumWriteT are the number of read and write operations
of T , respectively. The disk time for writing updated pages is not included in
ET since these writes occur after the transaction has committed [6].

The performance metric used in the experiments is a deadline miss ratio,
which is the percentage of input transactions that the system is unable to com-
plete before their deadlines. We also use an additional performance metric, buffer
hit ratio, which gives the probability of finding the requested pages at buffers.

4 Experiment Results

We compare the performance of the algorithms under the following three cate-
gories: (a) transaction routing – PAR and DACA, (b) lock granularity – page and
record, and (c) concurrency control – WP and HP. By combining each category,
we implement eight algorithm sets for the SD-RTDBS.

4.1 Experiment 1: Feasibility of Real-Time Processing
in SD Cluster

To verify the feasibility of real-time processing in SD cluster, we first compare
the performance of SD cluster by varying MPL and NumNode. Fig. 2(a) shows
the experiment results where every input transaction is assumed to be same class
(ClassNum = 1). HP with record locking is used as a concurrency control, and
DACA is used for transaction routing. UpdatePr is set to 0.2. When MPL is low,
every system configuration exploits similar performance behavior. In this case,
even a single node can process all the input transactions within their deadlines.
As MPL increases, systems with large number of nodes exploit significant per-
formance improvement. This is due to load balancing and high buffer hit ratio. If
the number of nodes is large, each node may take over a small portion of system
load. The buffer hit ratio also increases due to large aggregate buffer size as Fig.
2(b) shows. As a result, the benefit of load balancing and high buffer hit ratio
dominate the negative effect of synchronization overhead between nodes.

We also compare the performance of single node system and SD clusters
with different transaction routing algorithms. Fig. 2(c) shows the result. Both

524 Sangho Lee, Kyungoh Ohn, and Haengrae Cho

Fig. 2. Results of experiment 1.

NumNode and ClassNum are set to 8. MPL is set to 400, and thus the steady
state load per each transaction class is 50 transactions. The load surge is ex-
pressed as a fraction of its steady state load. For example, a load surge of 20%
implies that the load of each non-surge class decreases about 20% (10 transac-
tions) and the total sum of additional load (70 transactions) goes to the single
surge class.

When the transaction load is evenly distributed (load surge = 0%), the single
node system performs worst. This is because the single node cannot cache all
the pages accessed by different transaction classes. Many buffer misses must
increase the number of transactions missing their deadlines. On the other hand,
both PAR and DACA can allocate each transaction class to its affinity node
and can achieve very high buffer hit ratio as Fig. 2(d) shows. As the load surge
increases, PAR performs worse because PAR does not distribute the extra load
of the surged transaction class to other nodes, and thus it suffers from lower
buffer hit ratio and limited computing facility. When the load surge is 100%,
PAR performs exactly like to the single node system. DACA performs better as
the load surge increases. Allocating more nodes to the surged transaction class
can achieve load balancing between nodes. Furthermore, the aggregate buffer
space for the surged transaction class increases also. This is why the buffer hit
ratio of DACA increases as the load surge increases.

Feasibility and Performance Study of a Shared Disks Cluster 525

Fig. 3. Results of experiment 2.

4.2 Experiment 2: Lock Granularity

At the next experiment, we compare the effect of lock granularity by varying the
update probability (UpdatePr) which determines the degree of data contention.
Fig. 3(a) and Fig. 3(b) show the experiment results when the load surges are set
to 0% and 100%, respectively. MPL is set to 240 and HP is used as a concurrency
control. DACA is used for transaction routing.

When the load surge is 0%, the lock granularity does not have significant
effect on the performance. This is because the lock conflicts between transac-
tions are inherently rare. However, when the load surge is 100%, all the trans-
actions belong to the same transaction class and they access the same portion
of database. As a result, there are many lock conflicts between transactions. In
this case, the record locking performs better than the page locking as UpdatePr
increases. The page locking causes many transactions being blocked or being
aborted due to priority inversion. As a result, the number of transactions miss-
ing their deadlines increases. The record locking does not suffer from its cache
coherency overhead seriously. Though not shown in this paper, the page lock-
ing outperformed slightly the record locking when a transaction accesses several
records for each page and UpdatePr is low. In this case, the record locking results
in several message communications to check the consistency of a cached page,
while the page locking requires only one message for the page.

Another observation is that the SD cluster is more sensitive to the setting
of UpdatePr than the single node system. This is particularly true when the
load surge is high as Fig. 3(b) shows. The reason is due to the cache coherency
overhead. When UpdatePr and the load surge are high, the probability of inter-
node buffer invalidation increases and more pages has to be transferred between
nodes. As a result, the transaction execution time becomes longer.

4.3 Experiment 3: Concurrency Control Algorithms

The last experiment compares the performance of real-time concurrency control
algorithms, HP and WP, by varying UpdatePr. Fig. 4(a) and Fig. 4(b) show the
experiment results when the load surges are set to 0% and 100%, respectively.

526 Sangho Lee, Kyungoh Ohn, and Haengrae Cho

Fig. 4. Results of experiment 3.

MPL is set to 240 and DACA is used for transaction routing. We set the lock
granularity as a page to create a situation where lock conflicts are more frequent.

When the load surge is 0%, WP outperforms HP in the SD cluster with eight
nodes. This is because (a) HP would produce unnecessary transaction aborts,
and (b) the priority inheritance of WP allows the disk manager to reduce I/O
queue waiting time for the high priority transactions. Note that in this workload
minimizing I/O queue waiting time is essential since the buffer hit ratio is rela-
tively low. On the other hand, HP performs better than WP when the load surge
is 100%. The buffer hit ratio of this workload is rather high, so handling data
contention efficiently is more important to meet transaction deadlines. It is well
known that WP performs worse under high data contention workload [6]. WP
may block high priority transactions repeatedly due to low priority transactions.
Furthermore, the priority inheritance mechanism causes many transactions ex-
ecuting at the same priority. This means high priority transactions effectively
receive little or no preferential treatment in WP.

5 Concluding Remarks

Although there has been a great deal of independent research in real-time pro-
cessing and SD cluster, their aggregation has not been investigated at all. By
adopting cluster technology, the real-time services will be highly available and
can exploit inter-node parallelism. In this paper, we investigate the cross effect
of real-time transaction processing algorithms and SD cluster algorithms with
the simulation model of an SD-based real-time database system (SD-RTDBS).

The basic results obtained from the experiments can be summarized as fol-
lows. First, the SD cluster can process real-time transactions better when the
number of concurrent transactions is large, there are many nodes, and efficient
transaction routing algorithm is implemented. This result implies that the SD
cluster is an effective and scalable alternative to the centralized database sys-
tem for real-time transaction processing. Next, the cache coherency overhead of
record locking is not significant. As a result, the record locking outperforms the

Feasibility and Performance Study of a Shared Disks Cluster 527

page locking through most of the workloads. Last, WP outperforms HP when
the degree of data contention and the buffer hit ratio are low. HP performs bet-
ter under high data contention workload as in case of the centralized database
system.

References

1. Abbott, R., Garcia-Molina, H.: Scheduling Real-Time Transactions: A Performance
Evaluation. ACM Trans. on Database Syst. 17 (1992) 513-560

2. Cho, H., Park, J.: Maintaining Cache Coherency in a Multisystem Data Sharing
Environment. J. Syst. Architecture 45 (1998) 285-303

3. Cho, H.: Cache Coherency and Concurrency Control in a Multisystem Data Sharing
Environment. IEICE Trans. on Infor. and Syst. E82-D (1999) 1042-1050

4. Cho, H.: Database Recovery using Incomplete Page Versions in a Multisystem Data
Sharing Environment. Infor. Processing Letters 83 (2002) 49-55

5. DB2 Universal Database for OS/390 and z/OS – Data Sharing: Planning and
Administration. IBM SC26-9935-01 (2001)

6. Harita, J., Carey, M., Livny, M.: Data Access Scheduling in Firm Real-Time
Database Systems. J. Real-Time Syst. 4 (1994) 203-241

7. Kanitkar, V., Delis, A.: Real-Time Processing in Client-Server Databases. IEEE
Trans. on Computers 51 (2002) 269-288

8. Lam, K-Y., Kuo, T-W. (ed.): Real-Time Database Systems: Architecture and Tech-
niques. Kluwer Academic Publishers (2000)

9. Mohan, C., Narang, I.: Recovery and Coherency-Control Protocols for Fast Inter-
system Page Transfer and Fine-Granularity Locking in a Shared Disks Transaction
Environment. In: Proc. 17th VLDB Conf. (1991) 193-207

10. Moon, A., Cho, H.: Global Concurrency Control using Message Ordering of Group
Communication in Multidatabase Systems. Lecture Notes in Computer Science,
Vol. 3045. (2004) 696-705

11. Ohn, K., Cho, H.: Cache Conscious Dynamic Transaction Routing in a Shared
Disks Cluster. Lecture Notes in Computer Science, Vol. 3045. (2004) 548-557

12. Schwetmann, H.: User’s Guide of CSIM18 Simulation Engine. Mesquite Software,
Inc. (1996)

13. Vallath, M.: Oracle Real Application Clusters. Elsevier Digital Press (2004)
14. Yousif, M.: Shared-Storage Clusters. Cluster Comp. 2 (1999) 249-257
15. Yu, P., Dan, A.: Performance Analysis of Affinity Clustering on Transaction Pro-

cessing Coupling Architecture. IEEE Trans. on Knowledge and Data Eng. 6 (1994)
764-786

16. Yu, P., Dan, A.: Performance Evaluation of Transaction Processing Coupling Archi-
tectures for Handling System Dynamics. IEEE Trans. on Parallel and Distributed
Syst. 5 (1994) 139-153

A Web Cluster Simulator
for Performance Analysis

of the ALBM Cluster System�

Eunmi Choi1 and Dugki Min2

1 School of Business IT, Kookmin University,
Chongnung-dong, Songbuk-gu, Seoul, 136-702, Korea

emchoi@kookmin.ac.kr
2 School of Computer Science and Engineering, Konkuk University,

Hwayang-dong, Kwangjin-gu, Seoul, 133-701, Korea
dkmin@konkuk.ac.kr

Abstract. A distributed server cluster system is a cost-effective solu-
tion to provide scalable and reliable Internet services. In order to achieve
high qualities in service, it is necessary to tune the system varying con-
figurable parameters and employed algorithms that significantly affect
system performance. In this purpose, we develop a simulator for perfor-
mance analysis of a traffic-distribution cluster system, called the ALBM
(Adaptive Load Balancing and Management) cluster. In this paper, we
introduce the architecture of the proposed simulator. Major design con-
siderations are given to the flexible structures that can be easily ex-
panded for adding new features, such as new workloads and scheduling
algorithms. With this simulator, we perform two simple cases of per-
formance analysis: one is to find appropriate overload and underload
thresholds and the other is to find the suitable scheduling algorithm for
a given workload.

1 Introduction

A distributed server cluster system is a cost-effective solution to provide scalable
and reliable internet services [1]. Distributed server cluster systems for Internet
services, so called Web cluster systems, haven been developed in various forms.
The most popular form is based on hardware L4 switches [2,3] as traffic managers
that would direct IP traffics to the highly appropriate server in a cluster. The
Linux Virtual Server (LVS) is a well-known software load balancer [4,5] and an
open software solution, so that it can be customized to collaborate with other
software tools or extended by add-ing an improved scheduling algorithm. The
third class is in a hybrid form; that is, a hybrid-type web cluster system employs
both S/W L4 network switch appliances and middleware services on server nodes

� This work was supported by the Korea Science and Engineering Foundation
(KOSEF) under Grant No. R04-2003-000-10213-0. This work was also supported
by research program 2004 of Kookmin University in Korea.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 528–537, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Web Cluster Simulator 529

for proactive and adaptive management. The ALBM (Adaptive Load Balancing
and Management) cluster, proposed in our previous research work [6], is in this
class.

In this paper, we present a web cluster simulator that can be used to solve
some decision problems in a web cluster system. The web cluster simulator aims
to simulate the ALBM cluster that employs the L4 traffic manager and mid-
dleware management services on server nodes. This paper introduces the archi-
tecture of the proposed simulator. Major design considerations are given to the
flexible structures that can be easily expanded for adding new features, such
as new workloads and scheduling algorithms. With this simulator, we perform
two simple cases of performance analysis. The first case is to get an insight of
how to find appropriate overload and underload thresholds for a given system
environment. This simulation results can be used to tune configurable parame-
ters of an adaptive scheduling mechanism in a web cluster system for the better
performance. The second is to help to find the appropriate scheduling algorithm
for a given workload characteristic. Since the workload assignment problem is
NP-Complete, it cannot be solved in a polynomial time. With the help of sim-
ulation, we provide the approximation approach to find the proper assignment
algorithm of workloads.

This paper is organized as follows. Section 2 introduces the ALBM cluster
system. Section 3 introduces the design architecture of the simulator. Section 4
and 5 show the simulation results with scenarios and analyze them. We summa-
rize in Section 6.

2 The ALBM Active Cluster Architecture

Before showing our simulator of a cluster system, we introduce the real archi-
tecture of ALBM (Adaptive Load Balancing and Management) cluster system
[6] that serves Web applications to a huge number of clients. As shown in Fig-
ure 1, the ALBM cluster system is composed of active switches, application
servers, and the management station. Although the cluster consists of tens of
application servers, called ‘nodes’, it is published with one site name and one
virtual IP address that are assigned to one or more active switches, called ‘Traffic
Managers’ (TMs). The TMs interface the rest of cluster nodes with the Inter-
net, making the distributed nature of the architecture transparent to Internet
clients. All inbound packets to the system are received and forwarded to appli-
cation servers by the TMs. It provides network-level traffic distribution services,
balancing the servers’ loads. On each of application servers, a middleware ser-
vice, called ‘Node Agent’ (NA), is running. The NAs are indicated by Circle ‘A’s
on the bottom of each node in Figure 1. The NA makes the underlying server be
a member node of the ALBM system. It is in charge of management and opera-
tion of the ALBM cluster, such as cluster formation, membership management,
and adaptive management and load balancing.

The management station, called ‘M-Station’, is a management center of the
entire ALBM cluster system, working together with the management console

530 Eunmi Choi and Dugki Min

Fig. 1. The Architecture of the ALBM Active Cluster System.

through Web-based GUIs. All administrators’ commands are received into and
executed through the M-Station. Communicating with NAs, the M-Station per-
forms all kinds of cluster management operations, such as cluster creation/re-
moval and node join/leave. The M-Station also collects the current configurations
and states of the entire system, and provides information to other authenticated
components in the system. Using the server state information provided by NAs,
it performs proactive management actions according to the predefined policies.
Besides, the M-Station checks the system state in the service-level, and carries
out some actions when values monitored from service-level quality are signifi-
cantly far behind the service-level QoS objectives.

The adaptive scheduling algorithms in the ALBM active cluster system adjust
their schedules, taking into accounts of dynamic state information of servers and
ap-plications collected from servers. By collecting appropriate information of
server states, the NAs customize and store the data depending on the application
architecture, machine types, and expectation of a system manager. Each NA
decides if the current state is overloaded or underloaded by using upper or lower
thresholds of resource utilization determined by system configuration and load
balancing policies of cluster management. After collecting state data of all NAs
in a cluster, the Master NA reports the state changes to the TM. By using the
state information reported by Master NAs, the TM adjusts traffics of incoming
requests properly to balanced server allocation. The scheduling algorithms are
applied to the TM through the control of M-Station.

3 The Architecture of the Simulator

The simulator consists of three packages and a number of common classes. The
three packages are trafficManager, trafficGenerator, and nodeService packages.
The trafficManager package is in charge of delivery of traffic requests into server

A Web Cluster Simulator 531

nodes, after receiving workloads from trafficGenerator. It is possible to choose a
workload-scheduling algorithm to distribute requests. When it uses the Adaptive
algorithm, it receives and uses status information of server nodes by controlling
periods. The trafficGenerator package generates request according to the setup
information of workload. A request requires a number different resources, such
as CPU, memory, and network bandwidth. The nodeService package works as
a server node in a cluster system. It receives a request from the trafficManager
package, calculates the amount of the workload to a number of different resource
loads, and assigns loads into resources of server nodes.

In addition to those packages, there are a number of classes used in common.
The SimulatorManager creates an instance object for simulator and controls the
simulation operation. The TrafficGeneratorParameter contains parameters to
generate workloads. The NodeParameter contains parameters for virtual nodes.
The Log analyzes and stores simulation results. The logged results are the total
number of requests processed in the system, the total number of requests failed,
the number of requests processed in a server node, the overload rate in a server
node, etc. The entire results are stored with the timestamps under a specific
excel file name and, at the same time, resource usages of each server node during
simulation are stored separately. The Clock keeps the logical time of simulation,
while keeping the globalTime as a static attribute. The logical time is used to
report timing of resource assignment and release, and the total simulation time.

3.1 The Structure of the trafficManager Package

The trafficManager package has the design structure shown in Figure 2. In order
to easily add an additional workload-scheduling algorithm, the factory design
pattern [8] is employed. When the Adaptive workload-scheduling algorithm is
used, each server node declares overloaded status by evaluating its current status
with the threshold value, and reports the status to the trafficManager. Thus, the
trafficManager stops further distribution of incoming requests to the overloaded
node.

In Figure 2, there are a number of classes: TMManager, TMFactory, Ab-
stractTM, and various concrete TMs. The TMManager generates a TM through
the TMFactory in the beginning of simulation. During simulation, the TMMan-
ager receives workload from trafficGenerator and pass the workload to the TM
generated. The TMFactory is a factory that creates proper TMs required. The
AbstractTM is an abstract class, which contains abstract methods that are over-
ridden by concrete TM classes. Also the AbstractTM calculates the releasing
time of workload that are assigned into the TM, and reports into the workload,
checks states of server nodes, and passes workload into server nodes via a work-
load scheduling algorithm applied. The abstract getNextNode() method is over-
ridden by subclasses to implement their specific workload scheduling algorithms.
The RRTM, LCTM, RTTM, ARRTM, ALCTM, ARTTM are concrete classes
for the AbstractTM, by applying the Round-Robin (RR), the Least Connec-
tion (LC), the Response Time (RT), the Adaptive-RR (ARR), the Adaptive-LC
(ALC), the Adaptive-RT (ART) scheduling algorithms.

532 Eunmi Choi and Dugki Min

Fig. 2. The Structure of the trafficManager package.

3.2 The Structure of the trafficGenerator Package

The trafficGenerator package is in charge of generating workloads that are logi-
cally composed of service requests. Each service request requires some amounts
of resources in a server node. In a real system, each request acquires a number
of resources at the same time. Thus, one workload is composed of a number of
loads. A load becomes CPU, memory, and network system resources with some
statistical requirement. The structure of the trafficGenerator package is shown in
Figure 3. In Figure 3, there are a number of classes to build the trafficGenerator
package. The TrafficGenerator provides a workload by gathering a number of
loads from resource generators. The Load shows a resource load, such as amount
of resource usage, resource holding time, arrival time, etc. The Workload con-
tains one or more loads in a form of Vector. The ResourceGeneratorManager
creates resource generators and pass the references to the TrafficGenerator. The
AbstractResourceGenerator is an abstract class that generates statistical values
according to the users input parameters. The statistical distributions that the
AbstractResourceGenerator generates contain Normal distribution, Exponential
distribution, and Uniform distribution. While producing distribution values, any
random numbers can be generated and pseudo random numbers from a specific
seed number can be generated. There are a number of concrete subclasses from
the AbstractResourceGenerator: CPUGenerator, MemoryGenerator, and Net-
workGenerator to generate CPU load, memory load, and network load, respec-
tively.

Fig. 3. The Structure of the trafficGenerator package.

A Web Cluster Simulator 533

3.3 The Structure of the nodeService Package

The nodeService package contains classes to serve node services, including node
resources such as CPU, memory, network bandwidth, and other resources that
affect the system performance. In our simulator, the virtual node acts as a server
node agent and also contains resource vectors representing resource loads.

The Resource class represents a resource with resource capacity, and upper
and lower thresholds. The Resource class checks the resource release, recovery,
and status after the resource loads release the assignment. The VirtualNode
class contains a resource vector and works as a server node to provide a service
according to client’s request. The VirtualNode class contains the node status,
overload information, node ID, etc. It also assigns loads from the workload into
the proper resources, and evaluates resource states to define the current node
status.

4 The Implementation of the Simulator

In this section, we show the GUIs of the simulator according to the processing
steps of the simulation. In order to generate workloads, the user can set up the
input parameters of the load amount, the duration time of load in a resource,
and statistical parameter values as shown in Figure 4. The execution environ-
ment is set up before starting simulation. It includes environment parameters,
arrival time parameters, and concurrent load parameters. The user can set up
the number of virtual server nodes, simulation time, the number of resources in
a node, and workload scheduling algorithm as shown in Figure 5 (a). The pa-
rameters related to the arrival time are set up by controlling the interval time as
shown in Figure5 (b). The user adjusts the time interval between any two work-
load requests by applying statistical distribution. A large number of workloads
generated by the trafficGenerator package may produce requests concurrently to
the trafficManager. Thus, this concurrency rate can be controlled by the input
parameters with statistical distribution as shown in Figure 5 (c).

Fig. 4. The Workload Parameters Setup.

534 Eunmi Choi and Dugki Min

(a) Environment Setup. (b) Arrival Time Setup. (c) Concurrent Load Setup.

Fig. 5. Setup GUIs of the Simulator.

(a) Virtual Node Setup GUI. (b) Virtual Node Setup Information.

Fig. 6. Virtual Node Setup.

The resource capacities of each virtual node and upper & lower thresholds
are set up as in Figure 6 (a). According to simulation environmental setup, the
user can set up a cluster of homogeneous system or a cluster of heterogeneous
system. Figure 6 (b) shows the resource capacities of each node and the threshold
values.

5 Simulation Scenarios

In this section, we show two simulation scenarios of generating workloads in a
server cluster system and analyzing the performance results.

5.1 Finding the Optimal Thresholds

By using the simulator we propose, we can find the optimal threshold values in a
virtual cluster system with Adaptive scheduling algorithm. The optimal thresh-
old points result in the efficient workload scheduling and distribution, yielding

A Web Cluster Simulator 535

the load-balanced server nodes. The experimental environment of finding the
optimal thresholds is follows. The number of server nodes is five in homogeneous
form with the resource capacity 2000. The scheduling algorithm is ARR. The
arrival time internal is in Normal distribution with average 20, variance 5, and
the maximum limit 20. The concurrent rate of load is in Uniform distribution
with the maximum value 100 and the minimum value 1. The amount of re-
source required per request is in Uniform distribution with the maximum value
200 and the minimum value 1. Duration time of load per request is in Uniform
distribution with the maximum value 500 and the minimum value 1.

Figure 7 shows the success rate of client requests as the threshold value
changes. We predefined the lower threshold as 1500, and changed the upper
threshold from 1500 up to 2000. The highest success rate (%) from the total
number of client requests is achieved at 1850. Thus, in this environment, we can
ensure that the upper threshold would be 1850 for the best performance results
in the cluster system.

Fig. 7. Success Rates based on the Threshold Values.

5.2 Comparing Workload Scheduling Algorithms

The second simulation scenario is to test workload-scheduling algorithms with
a fixed form of workload and a random form of workload, respectively. The
fixed form of workload provides the same size and resource duration time. The
random form of workload generates any size of workload and arbitrary duration
time. The fixed form of workload has the fixed arrival time interval (5), the fixed
concurrent load (15), the fixed amount of resource per request (4.4), and the
fixed duration time per request (750). The random form of workload has the
arrival time interval in Normal distribution with average 6.4, variance 0.5, and
the maximum limit 50, the concurrent load in Normal distribution with average
15, variance 0.5, and the maximum limit 50, the amount of resource per request
in Uniform distribution with the maximum limit 400 and the minimum limit 1,
and duration time per request in Uniform distribution with the maximum limit
200 and the minimum limit 1.

536 Eunmi Choi and Dugki Min

Table 1. Simulation Testing Results from Workload Scheduling Algorithms (Unit:
Success rate (%) of the total number of requests).

Algorithm Fixed Workload Random Workload

RR 37.08% 17.23%

LC 37.08% 44.87%

RT 37.08% 44.99%

ARR 93.63% 97.01%

ALC 93.63% 96.99%

ART 93.63% 96.97%

When generating heavy workloads as much as the server is down with the
fixed form of workload and the random form of workload, respectively. Table 1
shows worse results from RR, LC, and RT workload scheduling algorithms. The
unit of resulting values is the success rate (%) of the total number of client
requests that are served without problem by the cluster system. As in the Table 1,
the RR case with the random form of workload achieves only 17% success rate.
However, with the same workload sets, the performance results are much better
when applying Adaptive scheduling algorithm by considering server status and
assigning the incoming requests into the server nodes. Another interesting point
is that when considering the results from ARR, ALC, and ART, the ARR is a
little better than other cases. It means that if we can apply the proper adaptive
mechanism for scheduling workloads, the ARR that contains first-fit property
can achieve the better performance than the ALC or ART that contain the
best-fit property.

6 Conclusion

In this paper, we designed and developed a simulator to simulate and test a dis-
tributed server cluster system by generating workloads and scheduling workloads
according to the user’s input parameter and statistical requirement. The simu-
lation results can be compared and analyzed in terms of the effects of workloads
on performances of a cluster system. We can control workload environment and
requirement statistically, apply various workload-scheduling algorithms to traffic
distribution, and change various parameter values for resource requests of server
nodes as the input parameters. Our simulator can simulate a given workload
environment for a cluster system, so that we can predict the performance results
by changing the workload scheduling algorithms, and other system parameters.
In this paper, we also provide two simulation scenarios to find the optimal point
of thresholds for the Adaptive-scheduling algorithm, and to compare the perfor-
mance results from various workload-scheduling algorithms.

References

1. Andrew S. Tanenbarum, Maarten van Steen: “Distributed Systems: principles and
Paradigms”, Prentice Hall, 2002

A Web Cluster Simulator 537

2. Jeffray S. Chase: Server switching: yesterday and tomorrow. Internet Applications
(2001) 114-123

3. Ronald P. Doyle, Jeffrey S, Chase, Syam Gadde, Amin M Vahdat: The trickle-down
effect: Web caching and server request distribution. In Proceedings of the Sixth
International Workshop of Web Caching and Content Distribution, 2001

4. Wensong Zhang, Shiyao Jin, Quanyuan Wu: Scaling Internet Service by LinuxDi-
rector. High Performance Computing in the Asia-Pacific Region, 2000. Proceedings.
The Fourth International Conference/Exhibition, Volume: 1, (2000) 176 -183

5. Wensong Zhang: Linux Virtual Server for Scalable Network Services. Linux Sympo-
sium 2000, July (2000)

6. Eunmi Choi, Dugki Min: A Proactive Management Framework in Active Clusters.
LNCS on IWAN, December 2003

7. Valeria Cardellini, Emiliano Casaliccho, Michele Colajanni, Philip S. Yu: The State
of the Art in Locally Distributed Web-server Systems. IBM Research Report,
RC22209(W0110-048) October (2001) 1-54

8. Mark Grand, “Patterns in Java, Volume1, A Catalog of Reusable Design Patterns
Illustrated with UML”, John Wiley, 1998

Dynamic LoadBalancing Scheme
Based onResource Reservation for Migration

of Agent in the PureP2P Network Environment�

Gu Su Kim, Kyoung-in Kim, and Young Ik Eom

School of Information and Communication Engineering,
Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon,

Kyunggi-do, 440-746, Korea
{gusukim,kimki95,yieom}@ece.skku.ac.kr

Abstract. Mobile agents are defined as processes which can be au-
tonomously delegated or transferred among the hosts in a network in or-
der to perform some computations on behalf of the user and co-operate
with other agents. Currently, mobile agents are used in various fields,
such as electronic commerce, mobile communication, parallel process-
ing, search of information, recovery, and so on. In pure P2P network
environment, if mobile agents that require computing resources rashly
migrate to another peers without the consideration on the peer’s capac-
ity of resources, the peer may have a problem that the performance can
be degraded, due to the lack of resources. To solve this problem, we
propose resource reservation based load balancing scheme of using RMA
(Resource Management Agent) that monitors workload information of
the peers and decides migrating agents and destination peers. In mo-
bile agent migration procedure, if the resource of specific peer is already
reserved, our resource reservation scheme prevents other mobile agents
from allocating the resource.

1 Introduction

A mobile agent is a process that represents a user in a network environment
and is capable of migrating from one node to another, performing computations
on behalf of the user [1]. By deploying the mobile agent environments, we can
get several advantages such as reduction of network traffic, asynchronous and
autonomous activities of the mobile agents, dynamic adaptation capability, and
the robustness and fault-tolerance [2]. But, if mobile agents migrate to a specific
node without consideration of the available resource of the node, it decreases the
efficiency of the corresponding system.

In this paper, we propose a load balancing scheme that increases the efficiency
of the system by reserving resources of the peer that have enough resources in
the pure P2P environment. If the workload of the peer that executes the mobile
agent becomes higher than the pre-defined threshold value, the peer gathers the
� This paper was supported by Samsung Research Fund, SKKU 2002.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 538–546, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Load Balancing Scheme Based on Resource Reservation 539

information on the amount of available resources and the information about the
workloads of its neighbor peers, and decides whether to migrate the mobile agent
or not. This scheme prevents mobile agents from being centralized in a specific
peer, and increases the efficiency of the resource usage.

The rest of the paper is organized as follows. In section 2, we describe some
related works on mobile agent systems, the P2P networks, and the load balanc-
ing schemes using mobile agent. Section 3 describes our system environment,
message formats, and algorithms. Section 4 shows the performance evaluation.
Finally, Section 5 concludes our scheme.

2 Related Works

In this section, we describe P2P networks, mobile agent concept, and existing
load balancing schemes that uses mobile agents.

2.1 P2P Network

In general, each peer in a P2P network performs both roles of client and server.
To overcome the concentration of traffic in the existing centralized network ar-
chitectures, each peer tries to maximize the performance by distributing its jobs,
cooperating with other peers, and sharing resources. The type of P2P network
can be classified into two categories according to whether the servers exist or
not: one is the pure P2P network and the other is the hybrid P2P network. Fig. 1
shows these two P2P network architectures [3].

Pure P2P network does not require any server for system operation and
service. In this architecture, all the peers have both roles of client and server.
This architecture has high reliability and scalability because any peer can get a
service it wants from any other peer that provides the service. This architecture
is used in Gnutella [4].

Hybrid P2P network provides services by using some servers. In this environ-
ment, after connecting to a server in the network, each peer sends the information
on the shared files or services that he has. The server then maintains the shared
file list information for each peer that is connected to him and acts as a media-
tor between service requester and service provider. This architecture is used in
Napster [5].

P8

P6

P2

P4

P3P7

P1

P5

(a) Pure P2P network

P8

P6

P2

P4

P3P7

P1

P5

server

(b) Hybrid P2P network

Fig. 1. P2P network architecture.

540 Gu Su Kim, Kyoung-in Kim, and Young Ik Eom

2.2 Mobile Agent System

Mobile agent is a program that is capable of migrating autonomously in the
heterogeneous distributed environment. It helps network traffic reduction, asyn-
chronous interaction, load balancing, dispersion of service, and concurrent pro-
cessing [6]. Several academic and industrial research groups are currently in-
vestigating and building mobile agent systems such as Aglets [7], Ajanta [8, 9],
Voyager [10], Tacoma [11], and So on.

2.3 Load Balancing Using Mobile Agents

The aim of the load-balancing strategy is to adapt to the utilization and per-
formance requirements of the machines available and to the requirements of the
agents. The load balancing schemes can be classified into two categories: static
load balancing schemes and dynamic load balancing schemes [12, 13]. Static load
balancing scheme uses only information about the average behavior of the system
and ignores the current state of the system. In static load balancing, generally, a
task cannot be migrated elsewhere once it was launched on a host. Dynamic load
balancing scheme, on the other hand, reacts to the system state that changes
dynamically, and, to distribute dynamically the tasks, it may migrate the tasks
many times to increase the performance of the system.

The Comet mobile agent system [14] has the load balancing mechanism that
uses mobile agents. The Comet has one central host and several compute hosts.
The role of the central host is to initiate system startup, suspension, and termi-
nation. It is also responsible for providing an interface for query of the current
system load and agent distribution. The central host is also a decision-maker
about whether there is a need for agent migration or not, and also the chief
commander of the selection and location policies. Other than the central host,
there are a number of compute hosts. These are the actual hosts that perform
the computation and each agent starts and runs on the compute hosts. Migration
of agents may occur as needed in-between the compute hosts. Central Agent re-
siding at the central host gathers all the information submitted by Comm Agent
at each compute host, detects whether it is suitable to initiate an agent migra-
tion, and determines which agent should be migrated to which compute host.
But, Comet has several problems. If central host exits, agents cannot migrate
to other compute hosts. Also, if the number of compute hosts increases, it takes
more time for Central Agent to gather workload information.

3 Proposed Scheme

In this section, we describe our system architecture, message format, and com-
munication algorithm for mobile agent based load balancing in pure P2P network
environments.

Dynamic Load Balancing Scheme Based on Resource Reservation 541

RMA

Peer 1

RQ queue

RMA

Peer 2

RR queue

Request

Reply
RR queue

RQ queue

Fig. 2. System architecture.

3.1 System Architecture

Our proposed scheme is based on pure P2P network environment and restricts
resources of each peer to CPU and main memory. Fig. 2 shows our simple system
architecture.

Each peer has a RMA (Resource Management Agent) and message queues.
RMA is a static agent residing at the peer and monitors available resource
amount of the peer. RMA is also responsible for gathering the resource infor-
mation of other peers and selecting the agent to migrate and the target peer
to receive the agent. RMA deals with resource reservation message and revoke
message received from other peers. Each peer has two message queues: RQ (Re-
source reQuest) queue and RR (Resource Reservation) queue. RQ queue saves
the resource request messages, which includes information on the resource type
and amount requested from other peer. Reply messages received from the peers
having enough resources are saved into RR queue.

3.2 Message Formats

There are three message types: RREQ (Resource REQuest message), RREP
(Resource REPly message), and RREV (Resource REVoke) message. RREQ
message is the resource request message that the peer sends to the neighbor
peers when he lacks resources. RREP message is the reply message for RREQ
message. RREV message is the revocation message that cancels the resource
reservation. Fig. 3 shows the content of these messages.

In Fig. 3, Type field distinguishes the type of message and Seq field is used
to prevent duplicate messages. S Peer field specifies the ID of the peer that
requests the resource and R Type and R Size fields specify the resource type
and amount wanted. R Peer field in RREP message is the field having variable

(a) RREQ(Resource REQuest) message

(b) RREP(Resource REPly) message

(c) RREV(Resouce REVoke) message

Fig. 3. Message format.

542 Gu Su Kim, Kyoung-in Kim, and Young Ik Eom

length, where IDs of the peers that received the corresponding message is added.
Consequently, the transfer path of the message is stored into the R Peer field of
RREP message. The ID of the target peer to receive the mobile agent is saved
into the E Peer field of RREV message.

3.3 Algorithms

When a peer lacks resources to complete its jobs, RMA in the peer sends RREQ
message including resource type and amount to all its neighbor peers. Fig. 4
shows the resource request algorithm.

input : RT (Resource Type), RA (Resource Amount)

output:reserved peer

{
msg = Type(RREQ)+Seq(Seq.number)+S Peer(myPeerID)+R Type(RT)

+R Size(RS)+TTL(MH)+R Peer(NULL);

send msg to the connected peers;

TimeOut = C1×2×TT×MH+C2;

sleep(TimeOut);

select the most appropriate entry in RQ queue;

make RREV message and send the message to the connected peers except selected one;

}

Fig. 4. The resource request algorithm.

In Fig. 4, MH (Max Hop) is the maximum hop count of message transfer and
TT (Transfer Time) is the mean message transfer time of one hop. We assume
that the timeout to receive the reply message is set to 2×TT×MH (ms).

The RMA which monitors the available resource sends the RREQ message
including the required resource type and amount to its neighbor peers. The RMA
sending RREQ message waits for RREP messages during the specified period
(C1×2×TT×MH+C2 ms, C1, C2 are constants), and decides the optimal peer
to migrate a mobile agent by investigating information in the received RREP
messages.

The peer received RREQ message creates a QUEUE ENTRY and inserts this
entry into RR queue. Table 1 shows the fields of the QUEUE ENTRY.

Initially, ResF lag is 0, and, if available resource exists when RREQ mes-
sage is received, the ResF lag becomes 1. Fig. 5 shows the algorithm for RREQ
message processing.

The peer that received the RREQ message creates a QUEUE ENTRY and
inserts the entry into the RR queue. If the peer has enough available resource,
he reserves the resource and sends RREP message to the peer that initially re-
quested the resource reservation. Otherwise, the peer only stores RREQ message
into the RR queue and waits until the resource is revoked.

Fig. 6. shows the algorithm for RREP message processing.
If a RREP message arrives at the peer that initially requested the resource,

it is saved into RQ queue in the peer. Eventually, RMA finds out an optimal

Dynamic Load Balancing Scheme Based on Resource Reservation 543

Table 1. QUEUE ENTRY.

Field Description

S Peer The ID of the peer that requested the resource allocation.
Seq Sequence Number

RA(ResourceAmout) The amount of the resource requested
RT (ResourceType) The type of the resource requested

ReservedT ime The time that received the reservation request
ResF lag The flag whether the resource is reserved or not (default: 0)

input : msg(RREQ message received)

output : none

{
if (duplicate message) return;

record the Seq number of the msg and S Peer;

make a QUEUE ENTRY;

insert the QUEUE ENTRY into the RR queue;

if (GetResourceSize(msg.R Type) >= msg.R Size) {
Reserve the requested resource;

msg2 = Type(RREP)+Seq(msg.Seq.number)+S Peer(msg.S Peer)

+R Peer(msg.R Peer+myPeerID)+R Type(msg.R Type)+R Size(msg.R Size);

send msg2 to the peer that sent msg;

}
msg.TTL−−;

if (msg.TTL > 0) {
msg.R Peer += myPeerID;

send msg to the connected peers except the peer that sent msg;

}
}

Fig. 5. The algorithm for RREQ message processing.

input : msg(RREP message)

output : Reserved peer

{
if (S Peer field of msg != myPeerID) {

send msg to the previous peer within R Peer field of msg;

return;

}
insert msg into RQ queue;

}

Fig. 6. The algorithm for RREP message processing.

peer from its RQ queue information, migrates the mobile agent to the selected
peer, and sends RREV message to the other peers in its RQ queue except the
selected peer. Fig. 7 shows the algorithm for RREV message processing.

544 Gu Su Kim, Kyoung-in Kim, and Young Ik Eom

input : msg (RREV message)

output : none

{
msg.TTL−−;

if (msg.TTL < 0) send msg to the connected peers except the peer that sent msg;

if (E Peer field of msg == myPeerID) return;

remove the corresponding entry in RR queue;

}

Fig. 7. The algorithm for RREV message processing.

4 Performance Evaluation

In this section, we evaluate the performance of our scheme through simulation
and analyze the result. We have simulated our load balancing scheme in pure
P2P network using Visual C++ 6.0 on Window 2000 platform, and measured
the agent response ratio and turnaround time of our proposed scheme. Also, we
compared the performance of our scheme with non-migration scheme. The agent
response ratio can be computed as follows:

agent response ratio = service time / (sleep time + service time)

In our simulation, we assumed that interarrival time of mobile agents at
each peer follows exponential distribution with mean 100ms, and the average
execution time of mobile agents follows follows exponential distribution with
mean 5000ms. We also assumed that message transfer time takes 100ms and the
maximum hop count is set to 3 hops.

Fig. 8 shows the agent response ratio according to the number of mobile agent
creations per second. As the number of the agents created increases, the agent
response ratio of the two models decreases. But, the agent response ratio of our
proposed scheme is higher than non-migration scheme that does not consider
workload of each peer.

Fig. 9 shows the agent response ratio according to the agent execution time.
In this simulation, 10 mobile agents are created per second. When the execution

0

20

40

60

80

100

120

The number of agents created per second

A
ge

nt
 R

es
po

ns
e

ra
tio

 (%
)

non-migration scheme proposed scheme

1 2 5 10 20 40

Fig. 8. Agent response ratio according to the number of agents created.

Dynamic Load Balancing Scheme Based on Resource Reservation 545

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
Agent execution time (s)

A
ge

nt
 re

sp
on

se
 ra

tio
 (%

)

non-migration scheme proposed scheme

Fig. 9. Agent response ratio according to the agent execution time.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

The number of agents creation per second

Tu
rn

 a
rr

ou
nd

 ti
m

e
(m

s)

non-migration proposed scheme

 1 2 5 10 20 40

Fig. 10. Turnaround time according to the number of agents created.

time of the agent is smaller than 3 seconds, non-migration scheme is more efficient
than our proposed scheme because the agents in non-migration environments
seldom sleep. But, the agent response ratio of our proposed scheme becomes
higher than that of non-migration scheme when the execution time of mobile
agent increases. The reason is that, in non-migration scheme, the time an agent
waits for resource increases continuously, but agents in the environment of our
proposed scheme can migrate to the peer with enough available resources.

Fig. 10 shows the turnaround time according to the number of mobile agent
creations per second. Because the proposed scheme decrease the sleep time of
mobile agents via dynamic load balancing scheme, the turnaround time of the
mobile agents slowly increase than non-migration scheme.

5 Conclusion

In this paper, we proposed a migration scheme of mobile agents that supports
load distribution, cooperation, and resource sharing in P2P network environ-
ment. If the amount of available resource of the peer executing mobile agents
is under the threshold value, RMA gathers the information about the available
resources from its neighbor peers and finds out the peer with enough resources.
The peer can migrate its mobile agents to the selected peers. RMA, which resides

546 Gu Su Kim, Kyoung-in Kim, and Young Ik Eom

in each peer, takes charge of gathering the information about available resources
in neighbor peers. To increase the reliability and efficiency, if a mobile agent re-
serves a resource of the specific peer, the peer prevents other mobile agent from
migrating into him. Therefore, our scheme can increase the agent response ratio
and decrease the turnaround time in normal condition.

References

1. C. Harrison, D. Chess, and A. Kershenbaum, Mobile Agents: Are They a Good
Idea?, Research Report 1987, IBM Research Division, 1994.

2. D. B. Lange and M. Ohima, Programming And Deploying Java Mobile Agents
with Aglets, Addison Wesley, 1998.

3. D. Barkai, An Introduction to Peer-to-Peer Computing, Developer Update Maga-
zine, Intel Corporation, Feb. 2000.

4. CLIP2, The Gnutella Protocol Specification v0.4, Technique Report,
http://www.clip2.com

5. A. Oram, Peer-To-Peer, O’Reilly, Mar. 2001.
6. J. Baumann, et. al., Communication Concepts for Mobile Agent Systems, Lecture

Notes in Computer Science, Vol. 1219, Springer-Verlag, 1997.
7. A. Gopalan, S. Saleem, and D. Andresen, Bablets: Adding Hierarchical Schedul-

ing to Aglets, The 8th IEEE International Symposium on High Performance Dis-
tributed Computing, Redondo Beach, California, Aug. 1999.

8. N. M. Karnik and A. R. Tripathi, Security in the Ajanta mobile agent system,
Technical Report, University of Minnesota, Minneapolis, MN 55455, U. S. A, May
1999.

9. N. Karnik and A. Tripathi, Agent Server Architecture for the Ajanta Mobile Agent
System, Proceedings of the 1998 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA’98), pages 66-73, Jul.
1998.

10. Glass G., Voyager Core Package Technical Overview, White Paper, ObjectSpace,
1999.

11. D. Johansen, R. van Renesse, and F. B. Schneider, An Introduction to the
TACOMA Distributed System, Technical Report, Department of Computer Sci-
ence University of Tromso, Jun. 1995.

12. J. Gomoluch and M. Schroeder. Information Agents on the Move: A Survey on
Load-Balancing with Mobile Agents, Software Focus, Vol. 2, No. 2, Wiley, 2001.

13. D. Gupta and P. Bepari, Load Sharing in Distributed Systems, Proc. National
Workshop on Distributed Computing, Jadavpur University, Calcutta, Jan. 1999.

14. K. P. Chow and Y. K. Kwok, On Load Balancing for Distributed Multiagent Com-
puting,IEEE Transaction on Parallel and Distributed System, Vol. 13, No. 8, Aug.
2002.

Application of Feedforward Neural Network
for the Deblocking of Low BitRate Coded Images

Kee-Koo Kwon1, Man-Seok Yang1, Jin-Suk Ma1,
Sung-Ho Im1, and Dong-Sun Lim1

Embedded S/W Technology Center, ETRI
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

{kwonkk,msyang,jsma,shim,dslim}@etri.re.kr

Abstract. In this paper, we propose a novel post-filtering algorithm to
reduce the blocking artifacts in block-based coded images using block
classification and feedforward neural network. This algorithm exploited
the nonlinearity property of the neural network learning algorithm to
reduce the blocking artifacts more accurately. At first, each block is clas-
sified into four classes; smooth, horizontal edge, vertical edge, and com-
plex blocks, based on the characteristic of their discrete cosine transform
(DCT) coefficients. Thereafter, according to the class information of the
neighborhood block, adaptive feedforward neural network is then applied
to the horizontal and vertical block boundaries. That is, for each class a
different multi-layer perceptron (MLP) is used to remove the blocking ar-
tifacts. Experimental results show that the proposed algorithm produced
better results than those of the conventional algorithms both subjective
and objective viewpoints.

1 Introduction

Transform coding technique has been widely used in many image compression
applications [1]-[8]. And block DCT (BDCT)-based coding technique has been
adopted in many international standards, including the still and moving image
coding standards such as JPEG, H.263, MPEG, and others [1], [2]. However,
such techniques produce noticeable blocking artifacts along blocks boundaries
in decompressed images at a low bit rate, because the coefficients for each are
processed and quantized independently [2]-[8]. Moreover, the discontinuity effect
between adjacent blocks in decompressed images is more serious for highly com-
pressed images. Consequently, an efficient blocking artifacts reduction scheme is
essential for preserving the visual quality of decompressed images.

A variety of blocking artifacts reduction algorithms have been proposed to
improve the visual quality of decoded image in the decoder, such as adaptive
filtering methods in the spatial domain [3]-[5], the projections onto convex sets
(POCS)-based method [6], estimating the lost DCT coefficients in the transform
domain [7], and a filtering method in the wavelet transform domain [8]. The
POCS-based method has produced good results, however, since it is based on
an iterative approach, it is computationally expensive and time consuming. The

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 547–555, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

548 Kee-Koo Kwon et al.

filtering method in the wavelet transform domain is also unsuitable for images
containing a large portion of texture. In contrast, the spatial domain filtering
methods have the advantage of simplicity and easy hardware implementation.

Among the spatial domain filtering methods, Ramamurthi’s algorithm [3]
classifies each block as either monotone or an edge area, then a two-dimensional
(2-D) filter is performed to remove grid noise from the monotone areas, then
a one-dimensional (1-D) filter is performed to remove staircase noise from the
edge areas. However, this algorithm is unable to accurately classify monotone
and edge blocks.

The algorithm proposed by Kim et al. [4] classifies an image into a smooth
region mode and default mode using the pixel difference in the block boundary.
A 1-D LPF is applied to the smooth region mode, while a LPF based on the
frequency components in the block boundary is applied to the default mode. Al-
though this algorithm can conserve complex regions, it is still unable to eliminate
the blocking artifacts in edge regions.

Qui’s algorithm [5] used a feedforward neural network. In this algorithm, the
useful features extracted from the decompressed image are used as the input
to a feedforward neural network. Yet, since the neural network is applied to all
block boundaries, the edge components are blurred. And since this algorithm
processes only two pixels near the block boundary, other blocking artifacts are
occurred to the inner regions of the block.

Accordingly, we propose a new blocking artifacts reduction algorithm that
can reduce the blocking artifacts in block-based coded image using block classifi-
cation and feedforward neural network. In the proposed algorithm, each block is
classified into one of the four classes; smooth, horizontal edge, vertical edge, and
complex blocks, based on the characteristic of their DCT coefficients. Thereafter,
according to the class information of the neighborhood blocks, adaptive MLP
then applied to the horizontal and vertical block boundaries.

Experimental results show that the proposed algorithm improved the PSNR
and visual quality of JPEG compressed images and produced better results than
those of the conventional algorithms.

2 Proposed Post-filtering Algorithm

2.1 Structure of MLP

A multi-layer feedforward neural network consists of a set of sensory units that
constitute the input layer, one or more hidden layers of computation nodes,
and an output layer of computation nodes. The input signal propagates through
the network in a forward direction, on a layer-by-layer basis. MLP has already
been successfully ap-plied to a variety of difficult and diverse problems based on
supervised learning using an error back-propagation learning algorithm [9].

The error back-propagation (EBP) learning algorithm consists of two passes
through the different layers of the network; a forward pass and backward pass.
In a forward pass, an input vector is applied to the sensory nodes of the network,
and its effect propagates through the network layer by layer. Finally, a set of

Application of Feedforward Neural Network 549

Fig. 1. Block classification using 8×8 DCT coefficients Cuv distribution.

outputs is produced as the actual response of the network. During a forward
pass, the synaptic weights of the networks are all fixed. In contrast, during a
backward pass, the synaptic weights are all adjusted in accordance with an error-
correction rule. Specifically, the actual response of the network is subtracted
from the desired response to produce an error signal. This error signal is then
propagated backward through the network, against the direction of the synaptic
connections. The synaptic weights are adjusted to make the actual response of
the network move closer to the desired response in a statistical sense.

The current study uses MLP with an EBP learning algorithm to reduce the
blocking artifacts. That is, we use neural network filters rather than adaptive
linear filters be-cause compression and decompression are highly nonlinear and
complex and neural network filters have been proven effective in finding nonlinear
mappings between inputs and outputs. After training the MLP, the final synaptic
weights of the MLP are used as the processing filters to reduce the blocking
artifacts.

2.2 Block Classification

Each block is classified into one of four categories, that is, smooth block, hor-
izontal edge block, vertical edge block, and complex block, according to the
distribution of an 8×8 DCT coefficients Cuv, in which u and v represent the
horizontal and vertical frequency coordinates, respectively. That is, for block
classification, we use the fact that the distribution of the DCT coefficients is
important measures.

The block classification process is as follows. First, calculate the mean value
mCuv of the DCT coefficients Cuv for each block. Then, calculate

Ĉuv = Round(
|Cuv|
mcuv

) (1)

550 Kee-Koo Kwon et al.

Fig. 2. Result of block classification on a JPEG decoded LENA image with a bit rate
of 0.271 bpp.

where Round() is the rounding to the nearest integer and | · | is an absolute
value operator. Because the DCT coefficients Cuv have a floating-point value,
using these DCT values for block classification, the considering coefficients are
a lot, so increase the computational complexity. Thus in the proposed method,
normalize the coefficients using the mean value mCuv and then transpose the
integer value. So the small DCT coefficients have zero value.

Thereafter, as shown in Fig. 1, a block is classified into one of four categories
as follows:

1) Class 0 (smooth block): if i) more than one thing among
Ĉ00, Ĉ01, Ĉ10, Ĉ11 �= 0 and ii) Ĉuv = 0 for u > 1, v > 1

2) Class 1 (horizontal edge block): if i) more than one thing among
Ĉ20 ∼ Ĉ70 �= 0 and ii) all Ĉuv except for Ĉ20 ∼ Ĉ70, Ĉ00, Ĉ01, Ĉ10, Ĉ11 are
zero values

3) Class 2 (vertical edge block): if i) more than one thing among
Ĉ02 ∼ Ĉ07 �= 0 and ii) all Ĉuv except for Ĉ02 ∼ Ĉ07, Ĉ00, Ĉ01, Ĉ10, Ĉ11 are
zero values

4) Class 3 (complex block): all blocks except for class 0, class 1, and class 2.

Fig. 2 shows the result of the proposed block classification algorithm on a
JPEG decoded LENA image with a bit rate of 0.271 bpp. This classification
scheme is used to determine the class of the current processing block and then
select the corresponding MLP to adaptively reduce the blocking artifacts.

2.3 Adaptive Inter-block Filtering

Based on the above classification scheme, adaptive inter-block filtering is pro-
cessed the horizontal and vertical block boundaries. The horizontal inter-block
filtering is performed in a horizontal direction at a horizontal block boundary.

Application of Feedforward Neural Network 551

Table 1. (a) Horizontal and (b) vertical inter-block filtering methods using adaptive
MLP.

Likewise, the vertical inter-block filtering is performed in a vertical direction at
a vertical block boundary.

Horizontal and vertical inter-block filtering is performed adaptively to the
class information of the current block and the horizontal or vertical neighborhood
block, as shown in Table 1.

Because human visual system is sensitive to blocking artifacts in smooth re-
gion more than complex region, the proposed method designs the MLP which is
adaptive to the characteristic of the block. That is, as shown in Fig. 3, a strong
1-D 5-tap filtering is applied to smooth blocks, whereas a weak 1-D 3-tap filtering
is applied to horizontal and vertical edge blocks. For complex block, inter-block
filtering is only applied two block boundary pixels so as to preserve the im-
age details. The filtering of the horizontal and vertical directions is processed
separately using a different MLP.

Fig. 3. Adaptive filtering methods for smooth block, horizontal and vertical edge block,
and complex block.

552 Kee-Koo Kwon et al.

As shown in Fig. 3, to process the horizontal blocks, the input vectors for
the MLP are formed as follows:

Dn = |In+1 − In|, n = 0, 1, · · · , m (2)

where In and m denote the intensity value and number of input nodes in the net-
work, respectively. The corresponding desired output vectors are formed based
on the difference between the original image and the decompressed image as

tn =I(i + n, j)− Ĩ(i + n, j), n = 0, 1, · · · , m + 1,

i = 7, 15, · · · , M − 8, j = 0, 1, · · · , N − 1
(3)

where I(i, j), Ĩ(i, j), M , and N denote the original image, decompressed image,
horizontal image size, and vertical image size, respectively. We use the pair of
training samples in (2) and (3) to train the MLP until it converges. Once the
MLP is trained, its weights are saved. That is, the proposed MLP produce the
difference between the original image and the decompressed image. So the block-
ing artifacts are removed by adding the outputs of the MLP to the decompressed
image. That is, the postprocessed image Î(i, j) is formed as follows:

Î(i + n, j) =Ĩ(i + n, j) + yn, n = 0, 1, · · · , m + 1,

i = 7, 15, · · · , M − 8, j = 0, 1, · · · , N − 1
(4)

where yn denotes the outputs of the MLP.
After the horizontal blocks are processed, the vertical blocks are processed

in a similar manner with a different MLP of the same size.

3 Experimental Results

To evaluate the performance of the proposed algorithm, computer simulations
were performed using JPEG decoded images. The MLP were trained using three
training images (’BABOON’, ’BARBARA’, and ’BANK’) due to the generaliza-
tion capability of the MLP. Another three images (’LENA’, ’BOAT’, and ’PEP-
PERS’) were then used as the test images. Each image was 512×512 in size
with 256 gray levels and compressed by JPEG at various bit rates. The peak
signal-to-noise ratio (PSNR) was used to measure the performance of the post-
processing algorithms. For M×N images with [0, 255] gray level range, PSNR
can be defined as

PSNR = 10log10(
2552

MSE
) (5)

MSE =
1

M ×N

M−1∑
i=0

N−1∑
j=0

(I(i, j)− Î(i, j))2 (6)

where, I(i, j) and Î(i, j) denote the original image and postprocessed image,
respectively.

Application of Feedforward Neural Network 553

Table 2. Experimental results for JPEG decoded images.

The structures of the horizontal and vertical MLP were the same. The num-
ber of hidden neurons is decided through experiment and seven, five, five, and
two hidden neurons were used for class 0, class 1, class 2, and class 3, respec-
tively. The initial synaptic weights were initialized with a floating point interval
[0., 0.00001], and after training the MLP the final synaptic weights of the MLP
are used as the processing filters to reduce the blocking artifacts. To compare the
proposed algorithm with other conventional algorithms, the PSNR performances
of the proposed algorithm and those of the four conventional algorithms [4]-[6],
[8] are presented in Table 2. The proposed algorithm improved the PSNR by
0.10 dB to 0.74 dB in the JPEG decoded images, which was roughly the same or
better than the performances of the conventional algorithms. Yet, Yang’s algo-
rithm [6] and Kim’s algorithm [8] have good results, but these algorithms have
a high computational complexity, because both algorithms include an iterative
or wavelet transform.

A magnified portion of the LENA image decoded by JPEG with a bit rate
of 0.271 bpp, and the postprocessed images are shown in Fig. 4. The proposed
algorithm effectively reduced the blocking artifacts and preserved the original
high-frequency components, such as edges. And we showed that the postpro-
cessed image by using Kim’s method [4] has the most subjective quality among
the conventional methods. As shown in Fig. 4, the proposed method effectively
reduced the blocking artifacts in smooth and complex regions and the mosquito
noise near the edges. Kim’s method [4] reduced the blocking artifacts in smooth
regions, but the blocking artifacts in complex regions and the mosquito noise
near the edges are still remained.

4 Conclusions

A new blocking artifacts reduction algorithm to reduce the blocking artifacts in
block-based coded images was proposed using block classification and adaptive
MLP. In this algorithm, each block is classified into one of the four classes based
on the characteristics of their DCT coefficients. Thereafter, according to the class
information of neighborhood blocks, adaptive MLP is applied to the horizontal
and vertical block boundaries. As such, different MLP are applied to remove

554 Kee-Koo Kwon et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. A magnified portions of (a) JPEG decoded image with a bit rate of 0.271 bpp,
and postprocessed images using (b) Yang’s method, (c) Kim’s method [8], (d) Kim’s
method [4], (e) Qui’s method, and (f) proposed method.

the blocking artifacts. Experimental results showed that the proposed algorithm
improved the PSNR from 0.10 dB to 0.74 dB in JPEG decoded images, which
was roughly same or the better results than the performances of the conventional
algorithms. That is, the proposed algorithm effectively reduced the blocking
artifacts and mosquito noise, preserving the original high-frequency components,
including the edges.

Application of Feedforward Neural Network 555

References

1. Jain, A. K.: Fundamentals of Digital Image Processing. Prentice Hall, New York
(1990)

2. Wallace, G. K.: The The JPEG still picture compression standard. IEEE Trans.
Consumer Electron. 38 (1992) xviii-xxxiv

3. Ramamurthi, B. and Gersho, A.: Nonlinear space-variant postprocessing of block
coded images. IEEE Trans. Acoustics, Speech, Signal Processing, 34 (1986) 1258–
1268

4. Kim, S. D., Yi, J. Y., Kim, H. M., and Ra, J. B.: A deblocking filter with two
separate modes in block-based video coding. IEEE Trans. Circuits Systems Video
Technol. 9 (1999) 156–160

5. Qui, G.: MLP for adaptive postprocessing block-coded images. IEEE Trans. Circuits
Syst. Video Technol. 10 (2000) 1450–1454

6. Yang, Y., Galatsanos, N., and Katsagelos, A.: Projection-based spatially adaptive
reconstruction of block-transform compressed images. IEEE Trans. Image Process-
ing. 4 (1995) 896–908

7. Paek, H., Kim, R. C., and Lee, S. U.: A DCT-based spatially adaptive post-
processing technique to reduce the blocking artifacts in transform coded images.
IEEE Trans. Circuits Syst. Video Technol. 10 (2000) 36–41

8. Kim, N. C., Jang, I. H., Kim, D. H., and Hong, W. H.: Reduction of blocking Artifact
in block-coded images using wavelet transform. IEEE Trans. Circuits Syst. Video
Technol. 8 (1998) 253–257

9. Haykin, H.: Neural Networks: A Comprehensive Foundation. Tom Robbins, New
Jersey (1999)

msjung@mmlab.knu.ac.kr, shkim@bh.knu.ac.kr

jheom@kt.co.kr

rsr@mail.chungwoon.ac.kr

++

++

++=

≤≤++−+= ωω
ω

DBGA_Algorithm (H_R[], M_R[], L_R[], i)
{
if (i == |N/2|)
for (i=1; i<|N/2); i++)
{
H_G[i] = H_R[i] + L_R[i](1-w);
M_G[i] = M_R[i];
L_G[i] = L_R[i] – L_R[i]*w;

}
if (i == N)
for (i=|N/2|+1; i<N; i++)
{
H_G[i] = H_R[i] + L_R[i](1-w);
M_G[i] = M_R[i];
L_G[i] = L_R[i] – L_R[i]*w;

}
 }

<

<

A Layered Scripting Language Technique
for AvatarBehavior Representation andControl�

Jae-Kyung Kim1, Won-Sung Sohn2, Beom-Joon Cho3,
Soon-Bum Lim4, and Yoon-Chul Choy1

1 Dept of Computer Science, Yonsei University,
Shinchon-dong, Seodaemun-gu, 120-749, Seoul, Korea

{ki187cm,ycchoy}@rainbow.yonsei.ac.kr
2 Computational Design Program,

School of Architecture Carnegie Mellon University,
Pittsburgh, PA15213, USA
sohnws@u.washington.edu

3 Department of Computer Engineering,
Chosun University Kwangju, Korea

bjcho@chosun.ac.kr
4 Department of Multimedia Science, Sookmyung Women’s University,

Chungpa-dong, Yongsan-gu, 140-742, Seoul, Korea
sblim@sookmyung.ac.kr

Abstract. The paper proposes a layered scripting language technique
for representation and control of avatar behavior for simpler avatar con-
trol in various domain environments. We suggest three layered archi-
tecture which is consisted of task-level behavior, high-level motion, and
primitive motion script language. These layers brides gap between appli-
cation domain and implementation environments, so that end user can
control the avatar through easy and simple task-level scripting language
without concerning low-level animation and the script can be applied var-
ious implementations regardless of application domain types. Our goal
is to support flexible and extensible representation and control of avatar
behavior by layered approach separating application domains and imple-
mentation tools.

1 Introduction

With computer becoming an important part of our lives, many of our activi-
ties are achieved in virtual environment. Now, computers are not just a machine
doing simple jobs but one of the interfaces to our social activities [1]. Thus, inter-
active user inter-face techniques between human and computer which can induce
interests is becoming more and more important. The avatar is a representative
example of the interface techniques. Avatar techniques have rapidly progressed
over the recent years. Gartner group [2] selected the avatar application as the

� This work was supported by Ministry of Commerce, Industry and Energy.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 565–573, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

566 Jae-Kyung Kim et al.

major communication technique among ten branch information which were paid
attention to in 21st century.

Today, there has been an active research on the application of avatar along
with representation and control of avatar behavior. The control of avatar espe-
cially through the control of web based language XML along with behavior of
XML based behavior script made standard representation and control of avatar
behavior feasible. Thus, various script languages that can control avatar in var-
ious purposes and environment are being researched.

In this paper, we defined XML based avatar behavior expression and con-
trol script through hierarchical approach method to provide users simple avatar
behavior control interface in various domain environment and implementation
environment.

The proposed script is made up of task-level behavior, high-level and primi-
tive motions. Each layer of script operates independently and avatar expression
and control is made possible in formal way in various domains and implementa-
tion environment.

2 Related Works

2.1 Task-Level Behavior

Task is avatar’s behavior with specific purpose or compensation [11]. For exam-
ple, avatar behavior such as ‘walk to table’ or ‘jump here to there’ is simply
not walk, jump motions itself but they have the purpose to go specific location.
Task is defined differently depending on the domain, but in the case of cyber
class domain, task can be explanation and query answer like ‘explain’, ‘answer’,
‘query’ and in shopping mall, task is ‘introducing’ and ‘selling’ a product.

The existing research using this kind of task based behaviors are STEVE [10],
CPSL [6], and Wizlow [9]. In the task based avatar system, user does not have to
ap-point complicated avatar’s behavior, and simply assign necessary tasks which
are corresponding to domain.

However, in most of the systems, task-level behaviors are dependent to ani-
mations which avatar engine offers. Therefore, task-level behavior can be depen-
dent on specific system’s low-level motion, and avatar behavior’s extensibility or
reusability, efficiency can be deteriorated.

2.2 High-Level Motion

For general users to control avatar motion by using each joint rotational an-
gle motion expression like lower level motion expression is a very difficult task.
Therefore, users should be able to control avatar without concerning low-level
animation data. The representative research of avatar high-level motion are
AML [3], CML [4], VHML [5], STEP [8], TVML [7]. All of these are XML
based and express avatar motion independently from specific implementation
environment.

A Layered Scripting Language Technique 567

The purposes and scopes of the scripts are somewhat different. In the case
of AML, it controls through parameter by calling low-level motion data from
fixed motion library like MPEG4 from the script. In the case of CML, primitive
motion is defined as tag and avatar motion is expressed as an independent script
from task domain and avatar tool. STEP is designed to control avatar’s body
through logic language and CPSL supports avatar motions for cyber teaching
environment. However, these script-ing languages represent motions by com-
plicated parameters, common users experience difficulty in controlling avatar
motion.

3 Avatar Behavior Hierarchical Representation
and Control

In this paper, behavior expression and control language is defined to control
hierarchical avatar behavior, and to gain high extensibility, convertibility, and
reusability of avatar high-level motion. We suggest three layered architecture:
task-level behavior, high-level motion, and primitive motion. The task-level be-
havior represents task oriented avatar behaviors used in various task domains
so that end user can control the avatar through easy and simple task-level user
interface. High-level motion provides abstract and parameterized actions inde-
pendent from task domains and implementation.

Also, these script languages are translated into another level of motion. The
changes in the script were to extract and analyze object information of avatar in
virtual environment and achieve appropriate interaction in virtual environment.

Table 1. Characteristics of proposed scripting language.

Component Characteristic

Task-Level - required set of behaviors to perform tasks for specific domain such
Behavior as shopping mall, and game as cyber class

- domain dependent
- implementation such as character motion engine
or library independent

High-Level - parameterized representation of general avatar motions
Motion - abstract representation and control

- domain independent
- implementation such as character motion engine
or library independent

Primitive - primitive motions supported by the specific character motion engine
Motion - physical representation and control

- domain independent
- implementation dependent

568 Jae-Kyung Kim et al.

Fig. 1. Overall Procedure of the Proposed System.

Therefore avatar’s task is properly performed regardless of dynamically changing
physical system of virtual environment.

The overall organizational system is shown in fig.+1 and in the next para-
graph. The role of each layer’s language and characteristics will be explained.

3.1 Avatar Task-Level Behavior

Avatar’s task-level behavior is to accomplish assigned task. For example, in
domain such as cyber education, there are demands for explanation of the con-
tents of the lecture, query and annotation of task-level behavior, and in case of
shopping mall, presentation of product and product manufacturing behavior is
needed. In this paper, the following design concept, avatar task-level behavior
to be used in various task domains is defined.

Simplicity : Easy to write by human scripter.
Abstraction : Completely abstracted from low-level concepts.
Readability : Human-readable, also machine readable.
Extensibility : Usable and extensible for various domain task environments.
Parameterization : Behaviors controlled by various parameters.
Synchronization : Sequential and parallel control of behaviors.

According to this concept, task-level script language is defined in XML DTD.
Since XML is independent and has superior extensibility, defined task-level be-
havior DTD can be applied to various domain environments, and when neces-
sary extensibility of behavior is easily achieved. DTD elements were designed as
shown in table 2.

A Layered Scripting Language Technique 569

Table 2. Elements of Task-level Behavior Script DTD.

Element Description

Behavior Name Defined according to each domain environment
Target Object Target object or location of behavior
Purpose Purpose or result of behavior
Adverb Speed, intensity and length for behavior control
Synchronization Sequential or parallel performance of behavior

A task should be divided into sequence of several sub motions. For instance,
’get the cup on the table’ task are consisted of sequence of ’go to table’, ’raise a
hand’ and ’grab the cub’. Thus, formal generation technique for motion sequence
should be applied in order to convert high-level motion independently in domain
and implementation task-level behavior language, defined appropriately for each
domain environment.

Task-level behavior = 〈behavior name〉[〈target object〉|〈target location〉]
[〈purpose〉] [〈adverb〉]* [〈synchronization〉]+

According to the following process of model, motion is created to translate
the task behavior into a standardized high-level motion.

Formal Task Translation Model

– Identification of target
• find location of target object (Lo)

– Locomotive motion (Ml)
• identification of present avatar location (La)
• spatial distance between La and Lo

• generate Lm, if La Lo

– Manipulative motion (Mm)
• generate Mm for Lo

– Verbal information (Vi)
• generate verbal speech for avatar behavior if available

– Speed and intensity parameters
• parameterize Mm and Mm for speed, intensity and duration

Depending on the proposed conversion model, task behavior is divided into
and composed of locomotive and manipulative motion. These are transformed
into lower stage, high-level motion expression.

3.2 High-Level Motion

Avatar high-level motion is not dependent on any specific domain or implemen-
tation environment, and generally has abstract expression motion. High-level
motion ex-presses and controls avatar motion with its parameters like velocity,
intensity, and direction.

570 Jae-Kyung Kim et al.

In the proposed method, for the definition of avatar high-level motion, we
analyzed the existing parameters and property in the existing high-level motion
script to draw factors for avatar motion expression.

The high-level motion expresses avatar’s name, role, and gender and contains
at least one of the motions lists. The motion list is composed of motion elements
such as motion name and parameters like space, time, intensity, and verbal
elements.

First, spatial element is divided into destination property appointing target
with hand and feet gestures and target property expressing avatar’s direction.
Time element is avatar’s speed, continuance duration of motion, repetition of
motion, and sequential and parallel motion. Intensity element is element that
stresses or changes the intensity of the avatar motion property. Finally, verbal
element is to express speech information for output of avatar’s voice and sound
effect.

These parameters are converted to lower hierarchy, primitive motion, which is
de-pendent to implementation and express physical information of virtual world.
High-level motion expresses avatar motion independently and abstractly from
task domain or implementation environment. In the proposed script (fig. 2), the
above parameters were expressed after the defined XML based high-level motion
DTD.

3.3 Primitive Motion

Primitive motion expresses avatar motion, which is provided by avatar engine
or motion library. As we mentioned before, high-level motion expresses avatar
motion in general and abstract concept. On the other hand, in primitive motion,
its format and expression changes depending on the specific avatar engine and
motion library. Expression also becomes subordinate of implementation envi-
ronment and forms a physical shape. For example, in high-level motion, motions
like 〈go to=“table”〉 is expressed 〈walk to x=“100” y=“12” z=“-2”〉 in primitive
motion layer.

Fig. 2. High-level Motion Parameters.

A Layered Scripting Language Technique 571

Fig. 3. The avatar is teaching an algorithm in cyber classroom.

4 Implementation Results

Our world represents an ordinary classroom with some components: a lecture, a
blackboard, a computer, a table, a door, walls and several lecture-related objects.
In task-level scripting language, author command the lecturer by combination
of these components and behavior. After the example script is translated to
a high-level script language by the suggested formal translator, the high-level
script will be loaded to the system and converted to primitive motions and
the avatar performs its tasks in fig. 3(a). As we mentioned before, the primitive
motion contains the physical information of the system, the same task-level script
can be properly applied even though physical structure of the virtual world is
reorganized as shown in fig. 3(b).

In addition, in different implementation environment, for example 2D en-
vironment like web, task script can be applied. Fig. 4 is an example of task
level script that was prepared using MS agent in web environment avatar con-
trol system. Because our architecture takes layered approach, application tools
and script languages are explicitly decoupled. This makes easier to apply script
language to various implementations.

5 Discussion

In this section, we are going to compare our scripting language with AML and
CPSL, mentioned in section 2. AML proposes explicit control over synchroniza-
tion of motion and speech, and CPSL is a scenario language for cyber teaching
assistant. Both languages are designed in a layered script. AML provides detailed
control mechanism for synchronization and intensity. This brings flexibility to
AML, but detailed timing information makes AML complicated. CPSL has pre-
defined animation tags. It is easy to create scenario for cyber class, in return,
CPSL is subordinated to CPSL engine and its motion database.

In order to measure the advantages of these scripting languages on creating
scenario script and comparability applied to other implementations. First, users
were asked to write down scripts for achieving 10 simple tasks by using each
scripting language. For example, the tasks are 1. open door 2. grab the cup 3.
wave a hand. Second, the scripts user made are applied to avatar implementation.

572 Jae-Kyung Kim et al.

Task- level
Script

High- level
Script

Primitive
Script

Primitive
Script

Fig. 4. The avatar performs his tasks in the 3D and 2D web environments.

Because of no standard for avatar engine, we selected MS Agent engine with basic
motion library. Then, check the successful task achieved by the agent using each
scripting languages.

First test uses scales from 1 (the least satisfaction) to 10 (the most satisfac-
tion) to compare the difficulty of creating scenario script and spent time. Second
test also uses the same scale to compare the number of correctly accomplished
tasks. A group of 20 subjects consisted of 14 male and 6 female graduate stu-
dents participated in the experiment. An ANOVA with repeated measures was
used to analyze the result. Fig. 5 shows the results.

As shown in fig 4, the users rated that the results of the proposed system were
easier and required less time to create the script. Significant effects were found
between the spent time for the proposed script and the other script (F(2,57) =
8.98, P 〈 0.05). Most of the users rated that the scripting language by the pro-
posed system were easier to create than those in the other system. In particular,
higher ratings were given for the proposed system with AML script which sup-
port complicated synchronization control. Also, the proposed system got more
number of achieved tasks. Note that CPSL has the low score because of its
implementation dependency.

1

2

3

4

5

6

7

8

9

10

Proposed
System

CPSL AML

S
ub

je
ct

iv
e

A
cc

ur
ac

y
R

at
e

Mean Rate

0

1

2

3

4

5

6

7

8

9

10

Proposed System AML CPSL

S
u
b
je

ct
iv

e
 A

cc
u
ra

cy
 R

a
te

Mean Rate

Fig. 5. Subjective evaluation of user satisfaction and achieved tasks.

A Layered Scripting Language Technique 573

6 Conclusion and Future Works

We suggested the three layered architecture consisted of task-level behavior,
high-level motion and primitive motion to provide simple interface for avatar
control at various application domains to users. Also each layer interacts inde-
pendently. Task-level behavior is explicitly separated from implementations so
that it could be reusable at different tools.

Using this approach, avatar behavior can be controlled more easily in task-
level and in high level and primitive motion, it is possible to control and express
avatar motion with great reusability and extensibility which does not depend on
implementation environment through abstract and physical expression.

In future works, an intuitive graphical user interface for the input of avatar
tasks, and avatar motion controls based on avatar-object interaction technique
are required for providing more efficient interface to users.

References

1. Prendinger, H.: Life-like Characters. Life-like characters book, Springer-Verlag
(2003) 3-17

2. Woo, S.: Virtual Human Trends. Journal of Korea Multimedia Society, Vol. 6. No.
4 (2000)

3. Kshirsagar, S., Thalmann, D., Kamyab, K.: Avatar Markup Language. Proceeding
of the workshop on Virtual environments (2002) 169-177

4. Arafa, Y., Mamdani, E.: Scripting embodied agents behaviour with CML. Pro-
ceeding of Intelligent User Interfaces (2003) 313-315

5. Marriott, A., Stallo, J.: VHML- Uncertainties and Problems A discussion. Proceed-
ing of Embodied conversational agents for AAMAS2002, Bologna, Italy (2002)

6. Yoshiaki, S., Matsuda, H.: Design and Implementation of Scenario Language for
Cyber Teaching Assistant. International conference on Computers in Education
(2001)

7. Hayashi, M.: TVML. ACM SIGGRAPH 98 Conference on applications (1998) 292-
297

8. Huang, Z., Eliens, A., Visser, C.: Implementation of a scripting language for
VRML/X3D-based embodied agents. Proceeding of web technology (2003) 91-100

9. Lester, C., Zettlemoyer, S., Gregoire, P., Bares, H.: Explanatory Lifelike Avatars.
Autono-mous Agents (1999) 30-45

10. Ricket, J., Johnson, W.: Task-Oriented Collaboration with Embodied Agents in
Virtual Worlds. Embodied Conversational Agents, MIT Press (2000) 95-122

11. Thalmann, D.: Autonomy and Task-Level Control for Virtual Actors. Program-
ming and Computer Software, No. 4 (1995)

{mhpark,fishwick}@cise.ufl.edu

•
•
•
•
•

•
•
•
•
•

Linux-Based System Modelling
for Cyber-attack Simulation

Jang-Se Lee1, Jung-Rae Jung2, Jong-Sou Park3, and Sung-Do Chi3

1 The Division of Information Technology Engineering,
Korea Maritime University, Korea

jslee@bada.hhu.ac.kr
2 Cooperation of appeal telecom, Korea

dayfly77@freechal.com
3 The Department of Computer Engineering, Hangkong University, Korea

{jspark,sdchi}@mail.hangkong.ac.kr

Abstract. The major objective of this paper is to describe modeling on
the linux-based system for simulation of cyber attacks. To do this, we
have analyzed the Linux system from a security viewpoint and proposed
the Linux-based system model using the DEVS modeling and simulation
environment. Unlike conventional researches, we are able to i) reproduce
the detail behavior of cyber-attack, ii) analyze concrete changes of sys-
tem resource according to a cyber-attack and iii) expect that this would
be a cornerstone for more practical application researches (generating
cyber-attack scenarios, analyzing vulnerability and examining counter-
measures, etc.) of security simulation. Several simulation tests performed
on sample network system will illustrate our techniques.

1 Introduction

The growth of information technology and easy access to computers has enabled
hackers and would-be terrorists to attack information systems and critical infras-
tructures in the world [1]. A computer and network system must be protected to
assure security goals such as availability, confidentiality and integrity. Namely,
the complete understanding of system operation and attack mechanisms is the
foundation of designing and integrating information protection activities [2]. We
need to establish the advanced simulation methodology for analyzing the vul-
nerability, survivability, etc. of a given infrastructure as well as the expected
consequences of successful attacks and the effect of the defense policy [3].

Cohen [3], who was a pioneer in the field of network security modeling and
simulation, interestingly suggested a simple network security model composed
of network model represented by node and link, cause-effect model, character-
istic functions, and pseudo-random number generator. However, cyber attack
and defense representation based on cause-effect model is so simple that practi-
cal difficulty in application comes about. Amoroso suggested that the intrusion
model [4] should be represented by sequence of actions, however, the computer
simulation approach was not considered clearly. Wadlow [5] suggested an in-
trusion model with four classified states such as COOL, WARM, HOT, and

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 585–596, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

586 Jang-Se Lee et al.

COOLDOWN, but it failed to go beyond the conceptual modeling level. Nong
Ye [2] noticeably proposed a layer-based approach to a complex security sys-
tem, but failed to provide a practical modeling and simulation technique of the
relevant layers.

To deal with this, we have analyzed Linux-based system and performed Linux
system modeling using the DEVS (Discrete Event System Specification) which
is the hierarchical and modular modeling and simulation environment [6,7,8].
Unlike conventional research for security simulation that has still been at the
conceptual level or focused on statistical method, by adopting a discrete event
modeling and simulation methodology, it is possible to i) reproduce the detailed
behaviors of cyber-attack, ii) analyze concrete changes of system resource ac-
cording to cyber-attack and iii) expect that this would be a cornerstone for
more practical application researches (generating cyber-attack scenario, analyz-
ing vulnerability and examining countermeasures, etc.) of security simulation.

2 Brief Descriptions on DEVS Modelling
and Simulation Environment

The DEVS formalism is a theoretically well-grounded means of expressing mod-
ular discrete event simulation models developed by Zeigler [6,7]. A DEVS is a
structure:

M =< X, S, Y, δint, δext, λ, ta >
X means the set of events that occur outside the system. Y means the set

of output variables. S means the cross product of definition areas of state vari-
ables and s (s ∈ S) means the sequential snap shot of system according to
time progress. ta(s) is defined as the time allowed to be at the state s unless
system doesn’t get external events. δint is defined as the function that explains
the change of the state of model according to time progress when there are no
external events. δext is defined as the function that represents the change of the
state of model by the events occurred in the outside of the system. λ is defined
as the output of the system in the state s. The DEVS environment supports
building models in a hierarchical and modular manner, in which the term “mod-
ular” means the description of a model in such a way that is has recognized
input and output ports through which all interaction with the external world
is mediated [6,7,8]. This property enables hierarchical construction of models so
that the complex network security models can be easily developed.

3 Security Modelling for Linux-Based System

In the ever-changing world of global data communications, inexpensive Internet
connections, and fast-paced software development, security is constantly being
compromised. Linux system being similar to Unix in mechanism is open-source.
That means that the source code of the operating system is available – any-
one can view the source code and examine it, modify it, and suggest and make

Linux-Based System Modelling for Cyber-attack Simulation 587

changes to it. So, many hacks, exploits and network security tools are writ-
ten on Linux because it’s readily available [9]. Therefore, in the modeling on
information systems based on various operating systems, the modeling of Linux-
based systems can be effectively applied to analyzing hacking mechanism through
cyber-attack simulation, analyzing vulnerability and studying countermeasures.

3.1 Linux-Based System Model Design

We have tried modeling through the abstraction and detailing of components
and functions of Linux system from the security viewpoint on the basis of DEVS
framework. Also, we have performed modeling of command level to analyze the
detailed behavior of the system against cyber-attack.

Fig. 1 shows the security model structure for Linux. As shown in Fig. 1, a
Linux system model that can become coupled with Attacker Model is divided
largely into Kernel Model that represents Operating System and Process Models
that represent application services. Kernel Model again consists of Network Man-
ager Model, File System Manager Model and Process Manager Model. Process
Models are subdivided according to the provided functions into various service
models including the FTP Model, the Telnet and the Http Model, etc. Like this,
hierarchical modeling of Linux system has an advantage of low complexity for
modeling and has a merit that can consider concretely security factors in every
model.

The explanation of general flow of the proposed Linux-based System is as
follows. First, if Linux-based System Model receives the packet from Attacker

Fig. 1. Security Model Structure for Linux-based System.

588 Jang-Se Lee et al.

Model, it transmits the packet to the Network Manager Model in Kernel Model.
Network Manager Model performs network connection. If network connection
is normally done in Network Manager Model, the packet is transmitted to
Process Manager Model. Process Manager Model confirms that the packet is
from an already-connected user, and if not, it creates a new process and saves
that information in Process Map. Like this, after the allocation of process is
completed, Process Manager Model confirms an appropriate service and trans-
mits the packet to an appropriate Process Model. Then Process Model confirms
whether the command included in it is right, transmits the packet to Interpreter
Model, and receives pre/post condition according to commands from Interpreter
Model, which transmits the result of query of Command DB to Process Model. If
pre/post condition received from Interpreter Model needs to access a file system,
Process Model transmits that to Process Manager Model. And Process Manager
Model transmits the packet to File System Manager Model. File System Manager
Model performs various functions related to file including searching requested
file, destroying file, etc. Finally, processed result is transmitted to outside in
opposite order.

3.2 Network Manager Model

Network Manager Model consists of models coming under OSI 7 layer. This
performs functions like creating packets and transmitting them outside or inside,
and processing them. Models composing Network Manager Model are as follows.

3.2.1 Link Layer Model
Link Layer Model examines physical address (MAC Address). If that is normal,
this model transmits the packet to Network Layer Model that is the upper layer.
The DEVS representation of Link Layer Model is as follows.

State Variables
’passive, ’active, ’b-active, MAC Address

External Transition Function
If packet comes from physical layer model and state is ’passive
Then check packet.MAC address and

set state as ’active during processing-time
Else if packet comes from network layer model and state is ’passive
Then set state as ’b-active during processing-time

Internal Transition Function
If state is ’active, Then change state to ’passive
Else if state is ’b-active, Then change state to ’passive

Output Function
If state ’active, Then send packet to network layer model,
Else if state is ’b-active, Then send packet to physical layer model

Let’s explain above pseudo code according to DEVS formalism. ’passive,
’active, and ’b-active of state variable come under S that shows the state set of
models. Packets inputted from the physical layer model and network layer model
come under input event set X . The external transition function that represents
δext examines if the MAC address of input packet is right and maintains the

Linux-Based System Modelling for Cyber-attack Simulation 589

state of ’active during processing-time defined as ta(s) when state is ’passive and
packets come from physical layer model. And, if external input comes from the
network layer model, it maintains the state of ’b-active. The internal transition
function that represents δint changes the state into ’passive when the state is
’active or ’b-active. The output function, λ transmits packets to the network
layer model when the state is ’active and it transmits them to the physical layer
model when the state is ’b-active. Here, packets that are transmitted to outside
through output function come under output event set Y .

3.2.2 Network Layer Model
This analyzes the content of packet transmitted from Link layer Model with
IP lists of permitted users, examines the source IP of the packet, and decides
whether or not the user is a permitted. If not, an error message is sent. The
DEVS representation of Network Layer Model is as follows.

State Variables
’passive, ’active, ’b-active, IP Address List

External Transition Function
If packet comes from link layer model and state is ’passive,
Then check packet.sourceIP with IP Address List and

set state as ’active during processing-time
Else if packet come from transport layer model and state is ’passive
Then set state as ’b-active during processing-time

Internal Transition Function
If state is ’active, Then change state to ’passive
Else if state is ’b-active, Then change state to ’passive

output function
If state is ’active, Then send packet to transport layer model
Else if state is ’b-active, Then send packet to link layer Model
Else send error packet to link layer model

3.2.3 Transport Layer Model
This confirms the requested service with port number. If the requested service is
offered, this transmits packet to Application Layer Model. If not, error message
is sent. The DEVS representation of Transport Layer Model is as follows.

State Variables
’passive, ’active, ’b-active, Open Port List

External Transition Function
If packet comes from network layer model and state is ’passive,
Then check packet.destPort with Open Port List and

set state as ’active during ’processing time
Else if packet comes from session layer model and state is ’passive
Then set state as ’b-active during ’processing-time

Internal Transition Function
If state is ’active, Then change state to ’passive
Else if state is ’b-active, Then change state to ’passive

Output Function
If state is ’active, Then send packet to session layer model
Else if state is ’b-active, Then send packet to network layer model
Else send error packet to network layer model

590 Jang-Se Lee et al.

3.2.4 Physical Layer Model and the Remaining Higher Layer Models
These are abstraction models of basic function and play a middleman role be-
tween the high layer and the low layer. The DEVS representation of these models
is as follows.

State Variables
’passive, ’active, ’b-active

External Transition Function
If packet comes from lower layer model and state is ’passive,
Then set state as ’active during processing-time
Else if packet comes from higher layer model and state is ’passive
Then set state as ’b-active during processing-time

Internal Transition Function
If state is ’active, Then change state to ’passive
Else if state is ’b-active, Then change state to ’passive

Output Function
If state is ’active ,Then send packet to higher layer model
Else if state is ’b-active, Then send packet to lower layer model

3.3 File System Manager Model

File System Manager Model has the information about important files and direc-
tory related to security in Linux system. And it decides the process of requests
like as read, write and delete according to file permission and sends the result.
Each file has file name, file size, file type, file permission, file ownership, group
ID, saved location, and current state which is working or idle, etc. and it is
saved on Inode-Table. The file requested from external is processed according
to various environment variables and file information saved on Inode-Table. The
DEVS representation of File system Manager Model is as follows.

State Variables
’passive, ’active, Inode-Table, Env-attr

External Transition Function
If packet comes from process manager model and state is ’passive,
Then modify Inode-Table according Env-attr and

set state as ’active during ’processing-time
Internal Transition Function

If state is ’active, Then change state to ’passive
Output Function

If state is ’active, Then send packet to process manager model

3.4 Process Manager Model

Process Manager Model saves, manages and schedules information about pro-
cess. Process Manager Model has individual process information including pro-
cess ID(PID), current user ID, provided service name and process state in process
map so that it connects with an appropriate process properly whenever requests
enter. The DEVS representation of Process Manager Model is as follows.

Linux-Based System Modelling for Cyber-attack Simulation 591

State Variables
’passive, ’s-active, ’r-active, ’f-active, ’waiting, process map

External Transition Function
Update process map
If packet comes from network manager model,
Then set state as ’s-active during processing-time
Else If packet comes from process models,

If file access is needed,
Then set state as ’waiting during processing-time
Else set state as ’r-active during ’processing-time

Else If packet comes file system manager model,
Then set state as ’f-active during processing-time

Internal Transition Function
If state is ’s-active or ’r-active or ’f-active or ’waiting,
Then change state to ’passive

Output Function
If state is ’s-active, Then send packet to process model
Else If state is ’r-active or ’f-active,
Then send packet to network manager model
Else if state is ’waiting,
Then send packet to file system manager model

3.5 Process Models

Process Models consist of various service models performed according to user’s
service requests. For example, Process Models can consist of Telnet Model that
offers remote connection service, FTP Model that offers file transmission service
between two ends, Http Model that offers web service, Send-Mail Model that of-
fers electronic mail service, Router Model that passes packet to other network or
objective component model, Firewall Model that blocks illegal packets, and IDS
Model that detects illegal intrusion from outside, etc. Among Process Models,
the DEVS representation of Telnet Model is as follows.

State Variables
’passive, ’waiting, ’parsing, ’busy

External Transition Function
If packet comes from kernel and state is ’passive,
Then parse command in the packet and

set state as ’parsing during processing-time
Else if packet comes from interpreter model and state is ’waiting,
Then process pre/post-condition and

set state as ’busy during processing-time
Internal Transition Function

If state is ’parsing, Then change state to ’waiting
Else if state is ’busy, Then change state to ’passive

Output Function
If state is ’parsing, Then send packet to interpreter model
Else if state is ’busy, Then send packet to kernel model

3.6 Interpreter Model

Interpreter Model analyzes the command being in the input packet and obtains
pre-condition and post-condition through Command DB. Command DB can be

592 Jang-Se Lee et al.

Table 1. Pre/post-condition representation of Linux commands (partially-shown).

Command Pre-condition Output Post-condition
(current states) (next states)

rmdir Check the emptiness of Remove directory Change directory
the directory entries attributes

cd Check the file existence Change working Change directory
directory attributes

chmod Check the file existence Change the Change permission
permission mode attributes

created by command-level modeling, which is accomplished by grouping and
characterizing of commands that are used in various services. Table 1 shows an
example of command-level modeling using pre/post-condition representation in
Linux. Here pre-condition represents the condition for executing the command,
output represents the results by command execution, and post-condition repre-
sents the changed properties after command execution [10].

The DEVS representation of Interpreter Model is as follows.

State Variables
’passive, ’busy

External Transition Function
If packet comes from process model and state is ’passive,
Then get pre/post-condition from command-DB and

set state as ’busy during processing-time
Internal Transition Function

If state is ’busy, Then change state to ’passive
Output Function

If state is ’busy, Then send pre/post-condition to process-model

3.7 Attacker Model

Attacker Model performs attacks by changing resources of the target system ac-
cording to various cyber-attack scenarios. Cyber-attack scenario is expressed by
command set, which is the sequential list of continuous commands using appro-
priate vulnerabilities. Command set of attack scenario is shown in Table 2 [11].

Table 2. An example of cyber-attack scenario.

(1) telnet %Dest-IP (5) cat > ls /bin/sh
(2) login %ID %PW (6) chmod 755 ls

(3) ls -al (7) Export PATH= .
(4) cd tmp (8) /home/prog1

Attacker Model transmits each command being composed of a cyber-attack
scenario to target system sequentially and receives processed results and the state
of target system. The DEVS representation of Attacker Model is as follows.

Linux-Based System Modelling for Cyber-attack Simulation 593

State Variables
’passive, ’active, scenario-type, target-host

External Transition Function
If packet comes from target-host and state is ’passive,
Then assign next command from scenario-table and

set state as ’active during processing-time
Internal Transition Function

If state is ’active, Then change state to ’passive
Output Function

If state is ’active, Then send packet to target-host

4 Case Study

We have built models of a simple sample network to analyze concrete changes of
Linux system against cyber-attack and performed many simulations about this.
Fig. 1 shows a sample network and it consists of previously explained Linux
System Model and Attacker Model. Network between two models is omitted.
As shown in Fig. 1, Attacker Mode sends a packet including the command of
cyber-attack to Victim Host and receives the result of processing from the victim
host.

Table 3 illustrates the simulation result using the cyber-attack scenario in
Table 2 that gains root authorization by using files that set Setuid due to the
error of configuration. Here, ‘Clock’ means the simulation time and ‘Model’
means the model changed at that time. ‘What’ means commands processed in
Model, and ‘Remark’ means the supplementary explanation about ‘What’. Let’s
take a look at simulation processing briefly. First of all, Attacker performs login
by telnet connecting to Victim Host. If the command packets of telnet and login
come in Victim Host, the packets are transmitted to Process Manager Model
through Network Manager Model. And Process Manager Model creates and saves
a new process in Process Map that saves and manages process information. Let’s
suppose there is a file called prog1 that performs automatically “ls -al” which is
one of telnet commands by searching for files having setuid permission for attack.
Attacker moves to tmp directory and transmits “cat > ls /bin/sh” command
packet to Victim Host to create an executable file, ls, being able to start /bin/sh.
At this time, ls file is created with “rw−r−−r−−” access right according to the
default setting. Attacker sets the executing right of ls file through “chmod 755 ls”
and changes the value of PATH into a value that starts ls file in tmp directory.
Finally, Attacker performs prog1 and /tmp/ls set in PATH, that is, ls make
by Attacker is performed. Then /bin/sh is started and Attacker gains shell of
root-authorization.

Through analyzing cyber-attack simulation results, we can know the mecha-
nism of cyber-attack that gains root-authorization by using the file having setuid
permission and executing the file of malicious code from the attacker. Also, as a
defense strategy, we can prevent cyber-attack by removing the file having setuid
permission and limiting execution of user’s file. Meanwhile, vulnerability can be
considered the state of system resource. For example, when ‘Clock’ is 20.3 in
Table 3 there is vulnerability that a file of malicious code can be executed by

594 Jang-Se Lee et al.

Table 3. A simulation trajectory: “Obtaining root-authorization by using setuid file”.

Clock Model What Remarks
0.3 Attacker telnet Connect to Victim host

(203.253.146.215) 203.253.150.2 (203.253.150.2)
0.8 Network Manager telnet Checking MAC Address, IP Address,

Model of Victim host 203.253.150.2 and Open Port List at each layer
1.4 Process Manager telnet Creating process:

Model of Victim host 203.253.150.2 addition [203.253.146.215 / Telnet /
Idle / Anybody] to Process Map

...
2.8 Attacker login dayfly 1230 Try to log in 203.253.150.2
...
4.2 Process Manager login dayfly 1230 Altering Process Map:[203.253.146.

Model of Victim host 215 / Telnet / Waiting / dayfly]
...
5.6 Attacker ls -al Finding setuid file
...
8.4 File System Manager ls -al Suppose that prog1 is setuid file:

Model of Victim host Inode-Table[0] = [Name = “prog1” /
Dir = “/home” / Owner = dayfly77 /

Permit = “rwsr-xr-x” / Content =
“ls -al” / State = idle]

...
9.8 Attacker cd /tmp Change Directory
...

11.3 File System Manager cd /tmp Changing Working Directory:
Model of Victim host Work-DIR = /tmp, PATH =

/bin/sh/
...

13.7 Attacker cat > ls /bin/sh/ Create the “ls” file
...

16.3 File System Manager cat > ls /bin/sh/ Altering Inode-Table:
Model of Victim host Inode-Table[1] = [Name = “ls” /

Dir = “/tmp” / Owner = dayfly77
/ Permit = “rw−r−−r−−” / Content

= “/bin/sh” / State = idle]
...

18.8 Attacker chmod 755 ls Change Permission
...

20.3 File System Manager chmod 755 ls Altering Inode-Table:
Model of Victim host Inode-Table[1] = [Name = “ls” /

Dir = “/tmp” / Owner = dayfly77
/ Permit = “rwxr-xr-x” / Content

= “/bin/sh” / State = idle]
...

22.5 Attacker Export PATH = . Change Path for execution
...

24.8 File System Manager Export PATH = . Changing Path for execution:
Model of Victim host Work-DIR = /tmp, PATH = /tmp

...
26.0 Attacker /home/prog1 Execute the setuid file
...

28.3 Process Manager /home/prog1 Altering Process Map: [203.253.146.
Model of Victim host 215 / Telnet / Running / dayfly77]

Linux-Based System Modelling for Cyber-attack Simulation 595

Table 3. (Continued).

28.9 File System Manager /home/prog1 Executing the prog1 file:
Model of Victim host Inode-Table[0] = [Name = “prog1”

/ Dir = “/home” / Owner = dayfly77
/ Permit = “rwsr-xr-x” / Content =

“ls -al” / State = using]
Inode-Table[1] = [Name = “ls” /

Dir = “/tmp” / Owner = dayfly77
/ Permit = “rwxr-xr-x” / Content

= “/bin/sh” / State = using]
29.2 Process Manager /home/prog1 Creating Process Map: [203.253.146.

Model of Victim host 215 / Telnet / Running / root]
...

changing permission. Namely, it is possible to analyze vulnerability quantita-
tively by defining the degree of resource’s change related to system vulnerability
[11]. Also, cyber-attack can be defined as command set that can transform the
normal state of target system into the state that has vulnerability. Therefore,
unknown cyber-attacks can be explored by performing simulations of all possible
occasions on the proposed Linux-based System Model [12].

5 Conclusions

This study have discussed on the modeling on the linux-based system from a
security viewpoint. To do this, we have analyzed Linux system and designed
the Linux-based system model in hierarchical fashion using the DEVS modeling
and simulation environment. Unlike conventional research for security simulation
that has still been at the conceptual level or focused on statistical method, by
applying a discrete event modeling and simulation methodology, it is possible to
i) reproduce the detailed behavior of cyber-attack, ii) analyze concrete changes
of system resource according to cyber-attack and iii) expect that this would be
a cornerstone for more practical application researches (generating cyber-attack
scenario, analyzing vulnerability and examining countermeasures, etc) of security
simulation. In the foreseeable future, research for the vulnerability analysis of
various information systems will have to be continued by detailed modeling of
systems based on different operating systems.

References

1. T. A. Longstaff, C. Chittister, R. Pethia, and Y. Y. Haimes, “Are We Forgetting
the Risks of Information Technology”, IEEE Computer, pp 43-51, December, 2000

2. N. Ye and J. Giordano, “CACS – A Process Control Approach to Cyber Attack
Detection”, Communications of the ACM., 1998

3. Cohen, F., “Simulating Cyber Attacks, Defenses, and Consequences”, 1999 IEEE
Symposium on Security and Privacy Special 20th Anniversary Program, The Clare-
mont Resort Berkeley, California, May 9-12, 1999.

596 Jang-Se Lee et al.

4. Amoroso, E., Intrusion Detection, ATandT Laboratory, Intrusion Net Books, Jan-
uary, 1999.

5. Wadlow T. A., The Process of Network Security, Addison-Wesley, 2000.
6. B.P. Zeigler, Multifacetted Modeling and Discrete Event Simulation, Academic

Press, 1984.
7. Zeigler, B.P., H. Praehofer, and T.G. Kim. Theory of Modeling and Simulation

2ed. Academic Press, 1999.
8. B.P. Zeigler: Object-Oriented Simulation with Hierarchical, Modular Models. Aca-

demic Press, 1990.
9. Brian Hatch, James Lee, George Kurtz, Hacking Linux Exposed: Linux Security

Secrets and Solutions, Mc Graw Hill, 2001.
10. S.D. Chi et al, “Network Security Modeling and Cyber Attack Simulation Method-

ology”, Lecture Notes on Computer Science series, 6 th Australian Conf. on Infor-
mation Security and Privacy, Sydney, July, 2001.

11. J.S. Lee et al, “Simulation-based Vulnerability Analysis”, Computer Systems Sci-
ence and Engineering (Submitted)

12. M.W. Lee, “Automated Cyber-attack Scenario Generation Using the Symbolic
Simulation”, Master Thesis, Hangkong University, 2002.

A Rule Based Approach to Network Fault
and Security Diagnosis with Agent Collaboration

Siheung Kim1, Seong jin Ahn2, Jinwok Chung1, Ilsung Hwang3,
Sunghe Kim3, Minki No3, and Seungchung Sin4

1 Sungkyunkwan University, 440-746 Suwon, Korea
{shkim,jwchung}@songgang.skku.ac.kr

2 Sungkyunkwan University, 110-745 Seoul, Korea
sjahn@comedu.skku.ac.kr

3 Korea Institute of Science and Technology Information, 305-806 Taejon, Korea
{shil,shkim,mkno}@kisti.re.kr

4 Hansei University, 435-742, Kunpo, Korea
expersin@hansei.ac.kr

Abstract. This paper introduces rule-based reasoning (RBR) Expert
System for network fault and security diagnosis and a mechanism for op-
timization. In this system, we use agent collaboration mechanism which
is the process that the system gathers network environment data from
distributed agent. Collaboration mechanism make accurate diagnosis by
making inferences based on the results of various tests and measure-
ments. Additionally, we consider optimization of the system. In some
comprehensive systems like network fault diagnosis system or system
using decisive loops reasoning, so much more studies on its reasoning
time are necessary. So we consider reasoning time and rule probability
to optimize the system. For our purpose, rule reasoning time estimation
algorithm will be used, with the simulation, where a comparison with
the previous rule-based fault diagnosis system is possible.

1 Introduction

The Internet appeared to make a noticeable advancement, based on recent com-
puter telecommunication technologies and data telecommunication technologies.
Besides, a variety of network equipments organizing the internet and systems
linked to the equipments have increased in complexity and scale. With the ex-
tension of internet, it is extremely difficult to manage the network faults. Further
more the cost by network fault emerges critical problem in business area. To cope
with above problem, rule based approach to network fault is previously proposed
[1, 4, 9–12]. The LODES system is one of the systems that are using the RBR to
control the network errors. LODES system is capable of examining the error, but
it does not have the ability to control and recover the errors [1]. Cisco proposes
TCP/IP network diagnosis tool using ping, traceroute and packet debugging.
And Lucent suggests network fault management software, which is real time
network fault detection tool. But these systems are not enough to detect and re-
covery network fault problem accurately, especially network security, because of

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 597–606, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

598 Siheung Kim et al.

their methodological model. Therefore, we suggest rule based network fault and
security diagnosis expert system with agent collaboration and its optimization
algorithm that can be used other rule based system.

Chapter 2 will cover the collaborative process among agents of the RBR
Expert System. In Chapter 3, rule reasoning time estimation algorithm is de-
scribed. Finally, there will be a comparison of the agent collaboration model with
existing model and a proof of rule reasoning time estimation algorithm through
simulation.

2 RBR Based Network Fault Diagnosis
and Recovery System

2.1 RBR Fault Management Algorithm
Through Collaboration Among Agents

The RBR Expert System introduced in this study analyzes the causes of some
possible faults and recover them through collaboration among agents shown in
Fig. 1. This would heighten the reliability for an analysis of network fault. For
an application of rules based on collaboration as mentioned above, the following
introduces the four types of agents. The first is the T-Agent which is detect
network fault and is suppose to solve network problems. It analyzes network
fault through rule base hypotheses which may require another agents to send
information about their own network information. The second is the F-Agent
that resides on the same network in which the T-Agent is. The F-agent pro-
cesses rule requested by the T-agent and then return the result. The third is
the R-Agent which is a portal agent for agents in another network. The R-agent
plays a role in gathering test result from another network. A example can be
shown in Figure 2. When one host can’t have access to destination host through

Internet

A B C D E F G H
SELECTED

ON-LINE

T-Agent

Default Gateway
(Router/Switch)

The Management Domain of R-Agent

F-AgentR-Agent

1. T-Agent which want to analysis network

2. Request co-work
 (F-Agent, R-Agent)

4. Send co-work results

3. Request co-work
to R-Agents and get
results from R-Agent

The Management
Domain of R-Agent

5. Processing analysis with gathered data
and Rule Base

Rule
Base

R-Agent

Fig. 1. Rule processing using agent collaboration.

A Rule Based Approach to Network Fault and Security Diagnosis 599

Check items

Title : Default Connectivity Configuration Fault Detection(DCCFD)
NIC, NIC driver, cable connection, subnet mask, broadcast setup and IP
address(comparing with backup files)

Title : Application Demon Configuration Fault Detection(ADCFD)
Whether the entry for operating demon process in inetd .conf file or etc/services file
exist.
Whether the demon process operates normally.
Whether the demon exist.

Next Job

S12
(DCCFR)

S62
(ADCFR)

Diagnosis
Rules

S11

S61

Title : Network Environment Fault Detection(NEFD)
Whether the fault is one of interior network or exterior network If the result of pinging
test to default gateway is unknown host then go to S31, if not, go to S41

S22
(Report)

S21

Title : Routing Configuration Fault Detection(RCFD)
Whether static routing or dynamic.
Whether system can reach next 1-hop using tracing route.
Whether default or 0.0.0.0 entry exists in routing table.
The state of default-router If IP address of default-router exists in default-router file.
Whether routing demon processes exist.
Whether Operating file of routing demon processes exists

S32
(RCFR)

S31

Title : Name Service Configuration Fault Detection(NSCFD)
Whether the system is a resolver or a name server .
Discriminating between using file sources and using DNS for name service .
Whether the IP address and the host name in host file exist .
Whether the IP address and DNS server in resolv.conf file exist.
Whether the response of DNS server is normal.
Whether the IP address of current system is equals to the IP address in recolv .conf
file.

S42
(NSCFR)

S41

Title : Internet Demon Process Configuration Fault Detection(IDPCFD)
Whether the entry for operating internet demon process in inetsvc script exists .
Whether internet demon process is operating normally .
Compare current inetd.conf file to backup inetd.conf file

S52
(IDPCFR)

S51

Title : Security Week Point Detection(SWPD)
Whether packet rate or CPU rate or DNS query rate is too high based on information
from R-Agent.
Whether abnormal port open.

S72
(ADCFR)

S71

Fig. 2. Summary of network fault and security diagnosis and recovery rules.

a given router, another neighboring host will be requested for its test to secure
accuracy. When one agent detects a network fault, it carries out rule-based net-
work fault diagnosis algorithm, if necessary, requesting for collaboration from
another agent. The agent requested for its collaboration transmits information
about its own information after its proper action. The information is used to
diagnose faults and, if possible, recover them.

2.2 Summary of Network Problem Diagnosis and Recovery Rules

The RBR Expert System for Network Diagnosis and Recovery works itself based
on its rule base when faults occur. Its rules can be divided into 7 sub-rule sets
according to their actions. Fig. 3 shows the summary of network fault diagno-
sis and recovery rules. Sub-rule sets are DCCFD,DCCFR(Default Connectiv-
ity Configuration Fault Detection and Recovery), NEFD(Network Environment

600 Siheung Kim et al.

Fault Detection), RCFD,RCFR (Routing Con-figuration Fault Detection and
Recovery), NSCFD,NSCFD (Name Service Con-figuration Fault Detection and
Recovery), IDPCFD,IDPCFR (Internet Demon Process Configuration Fault De-
tection and Recover) and ADCFD,ADCFR (Application Demon Configuration
Fault Detection Recovery). The sub-sets except for NEFD can be classified into
diagnosis rules (Rule x1xx) and recovery rules (Rule x2xx). NEFD contains only
diagnosis rules. DCCFD,DCCFR is a Rule-set that diagnoses the status of NIC,
the cable, IP addresses and subnet mask including the basic connection config-
uration of a system. SWPD is a rule-set that find week point of host based on
security policy. For example, by checking DNS query rate or CPU rate, agent
can find the possibility of warm virus or attack. The whole rules can be found
in [2, 3, 5].

3 Efficiency Enhancement of Rule-Based Expert System

3.1 The Model of Improved Rule-Based Expert System

In this study, To implement rule base, we adopt the tree structure similar to
B-tree which supports various basic dynamic set operations including Search,
Predecessor, Successor, Minimum, Maximum, Insert, and Delete in time propor-
tional to the height of the tree [6, 7]. Additionally, we devise the object, called
controller, which manipulates the rule base. In Fig. 4, there is the controller
that manages the rule set. The controller has some factor of each rule set, and
based on this factor rule’s application order is decided. Each rule set is applied
according to the rule application order, in which the controller has defined and
the result is reported to the controller. If the relevant fault is recovered, it adds
the number of recovery that it has made itself. Whereas not, the switch applies
the next rule set. If we define the rule’s application order through this method,
the frequency of each fault is recorded whenever a fault occurs so the time used
to diagnose and recover a specific frequently occurred fault could be reduced.
Keeping record of the frequency of the fault is similar to the learning effect
of this system. A performance improvement could be expected by peripherally
apply-ing the diagnosis rules that are fit to the characteristics of the relevant
fault through an estimation of the characteristics of fault within the system or
the network, in which the fault diagnosis and recovery system is installed. Fig-
ure 5 shows the actual implementation of the rule and each diagnosis rule module
through c-like code. Each rule object stores some information to be used in re-
ordering. Information about the rules could refer to its probability and reasoning
time. The time taken to test the hypotheses of the rules varies among them, by
means of which their applied order is determined, affecting the optimization of
the whole system [8].

3.2 Reasoning Time Estimation Algorithm

To find network faults, the system needs to check the rules in rule-base one by
one. From the aspect of optimization, the system can be improved by reducing

A Rule Based Approach to Network Fault and Security Diagnosis 601

Fault
or

attack

Controller

S11

S31

S21

S51

S41

.

.

.

R1

R2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S12

S22

S32

S42

S52

S62

Reorder domain

Reorder domain

Diagnosis Rules Recovery Rules

S61

.

.

.

S71

S72

Fig. 3. Data structure of Rule-Base.

System_working()
{

while(true){
if (check_network_fault = true)
Controller_run();
}

}

Controller_run()
{

Rule_set *rule_set;
Rule *rule;

for(int i=0;i<num_of_ruleset;i++){
rule_set = Controller->rule_set[i];

for(int j=1;i< num_of_rule_in_ruleset; j++){
rule = rule_set->rule[i];

if (rule->execute() = hit){
rule->frequency++;
rule_set->frequency++;
rule->update_avg_RPT();
rule_set->update_avg_RPT();
Controller->reorder_ruletree();
break this function;

}
}

}
}

Fig. 4. Controller function.

602 Siheung Kim et al.

the process-ing time and rapidly search for an appropriate rule to solve net-
work problems. But the processing time is under the influence of the network
environment which cannot be controlled by the expert system. Therefore, in the
RBR Expert System, the fast search for the diagnosis rule helps optimization of
the system, for which the reasoning time and the probability of a specific fault
happen within the networks(rule probability) serve as a factor to be considered
for the re-ordering. To measure reasoning time of each rule, we must closely de-
fine the procedure of the rule. In our network fault management system, there
are three different kinds of rules. That distinction depends on that the rule re-
quires network information gathered by agent collaboration. They are the rule
which doesn’t need network information from other agents, the rule which needs
F-Agents information and the rule which needs F-Agents and R-Agent infor-
mation. For now, on a basis of the message-exchange processes described above
(Fig. 1), the rule processes time will be covered. Processing the rules without
helps from neighboring agents will require as much as the time taken to process
rules within a system. When it comes to the rules requiring helps from other
Agents, the whole rule reasoning time is that the time of the rule reasoning time
in each agent plus the time taken for messages to be transmitted to agents. Thus,
the whole rule reasoning time could be formulated as follows:

τi(T) ≤ τi ≤ τi(T) + Max [0,(rttr to t + τi(F)),
(rttr to t + rttr to t’ + τi(R’))] (1)

– τi(T),τi(F),τi(R’) : rule reasoning time in T,F,R’-Agent
– rttr to t, rttR to R’ : round trip time from R-Agent to T-Agent, R-Agent to

R’-Agent
– R’-Agent : R-Agent in another network

Where τi(T) refers to the time taken to process rules by T-agents and rtt
is the round trip time which means the time taken to transmit messages among
agents. After rule reasoning time Estimation, the controller records the whole
rule reasoning time to the controller in Fig. 4, which is used to determine the
applied order of rules after net-work fault diagnosis and recovery. Followings are
rule reasoning time estimation algorithm which was derived from [7, 8].

Assume that there are s pieces of rules in rule base. The reasoning time of
each rule is τ1, τ2, · · · , τ3.

Rule Set = {R1,R2, · · · ,Rs} (2)

Assuming that the initial probability of each rule during the reasoning process
is {P1,R2, · · · ,Ps} and the followings are conditional probability of rules.

P =

⎛⎜⎝p11 · · · p1n

...
. . .

...
pm1 · · · pmn

⎞⎟⎠ (3)

A Rule Based Approach to Network Fault and Security Diagnosis 603

Blow we define τij .

τij =

{
τRs + τRj + τRi i < j
τRj + τRi i > j

(4)

Initial step, We can estimate that expected reasoning time of ith rule is

Ti[1] = pi · τRi (5)

Second step, We can estimate that expected reasoning time of ith rule is

Ti[2] = pi · τRi +
s∑

j=1

pi · pijτij

= pi · τRi +
i∑

j=1

pi · pij · (τRs + τRj − τRi) +
s∑

j=1

pi · pij · (τRj − τRi)

= Ti[1] +
i∑

j=1

pi · pij · τRs +
s∑

j=1

pi · pij · (τRj − τRi)

(6)

Every time network fault occurred, controller estimates rule reasoning time
by above process and reorder the sequence of rules.

4 Experiments and Study

In First experiment, there was a comparison of network fault detection and
recovery ability of the proposed model with that of the other model. In next
experiment, we will show how much improved with reasoning time estimation
model.

4.1 Experiments 1

Table 1 shows comparison of proposed model and other models. Network con-
figuration and network device problem can be easily detected by above models
because the problem occurred in host itself. But Invisible Network node failure
can be detected by only proposed model because it needs not only information
of test host data but also information of other agents. In case Service Level De-
tect, assume that default router has different policy to each host. By comparing
packet rate in other agents, it is possible to detect service level. With this data,
the system can conclude that the host has low data rate because of default router
policy.

4.2 Experiments 2

The followings are the experimental results that indicate the improvement of the
system. Assume that there are 100 rules in the rule base used for the experiment.
The 100 rules were divided into 100/6 sub-sets of rules. In addition to that, the

604 Siheung Kim et al.

Table 1. A Comparison of the agent collaboration model with existing model

Case Description Proposed
Model Fault
Detect

Other Model
Fault Detect

Proposed
Model Fault
Recovery

Other Model
Fault
Recovery

Network
Configuration
Problem

A A P P

Network Device
Problem

A A N N

Default Router
Failure

A A N N

Router Filtering A P N N

Network Node
Failure

A P N N

DNS failure A A N N

Service Level
Detect

A P N N

A : All, P : Partial, N : Not

whole rule reasoning time was randomly set to fit the sub-sets. For example, In
the case of the rule sets for routing configuration fault diagnosis, their whole
rule reasoning time was engineered to be 20m seconds on the average and 2
in variance. On the condition that network faults can be always diagnosed by
diagnosis rules, their types were set to range from type 1 to type 100 where
they were made to happen in accordance with normal distribution of 50 on the
average and 5 in variance. Followings are the assumption used in experiments.
– There are 100 types of the network faults.
– Network fault occurred at the rate of the normal distribution, (average =

50, variance = 5)
– All network faults can be solved by the rule in the rule-base.
– All network faults match each rule one-by-one.
– Rule processing times followed by the rule set definition are distributed 0 to

20 randomly.

Fig. 5 shows a part of data where the number of the network faults amounts
to 100 faults. In the case that normal system after 100 times of the network
faults, the average was 0.46 seconds, and where system with rule reasoning time
estimation algorithm, the average refers to 0.28 seconds.

5 Conclusion

This study proposed the model that diagnoses and recovers the network fault and
network security problem through the collaboration of agents and its optimiz-

A Rule Based Approach to Network Fault and Security Diagnosis 605

Fig. 5. Rule processing using agent collaboration.

ing algorithm. To make accurate network fault analysis, we devise collaboration
mechanism which is based on distributed agents. The agents are divided into
T-Agent, F-Agent, and R-Agent according to the location of the network, and
diagnose and recover the network fault occurred in host through the process
collaborating in the form of query and answer. Moreover, it reports concerning
the network configuration model based on RBR. As well as fault management
model, we mainly discuss how to optimize the system. For such purpose, collabo-
rations among agents within networks, and the methodology of re-ordering rules
of rule base with controller between the drive part of the system and the rule
base were utilized. Such factors as the probability and the rule reasoning time
of the specific types of faults within networks were used to determine the order
of the applied rules, and the data in comparison those of the existing system
were brought forth as a proof of optimization. Finally, the future study should
pursue combining the RBR Expert System with other reasoning systems and
extend rule base so that the former could heighten the ability of network fault
diagnosis, and with NMS(Network Management System) so as to strengthen the
aspects of network management.

References

1. T. Sugawara, Acooperative LAN diagnosistic and observation expert system, com-
puters and communications, Proceeding of the Ninth Annual International Phoenix
Conference, 1990, pp. 667-674.

2. Yunseok jang, Seongjin Ahn, Jin Wook Chung, RBR Based Network Fault Detec-
tion and Recovery System using Agent Collaboration, ICOIN, 2003

3. Kwang Jong Cho, Seongjin Ahn, Jin Wook Chung, RBR Based Network Config-
uration Fault Diagnosis Algorithm using Agent Collaboration, Thesis of master’s
course, Sung-kyunkwan Univ.

4. Kang Hong Cho, Seongjin Ahn, Jin Wook Chung, Rule-based Agent system for
Fault Detection and Location on LAN, KIPS, vol. 7-7 pp.2169-2178, 2000

606 Siheung Kim et al.

5. Taein Hwang, Seongjin Ahn, Jin Wook Chung, Design and Implementation of
Rule-Based Network Configuration Fault Management System, Thesis of master’s
course, Sungkyunk-wan Univ.

6. Zheng, S.Q.; Sun,M.; Constructing Optimal Search Trees in Optimal Time; Com-
puters, IEEE Transactions on , Volume: 48 , Issue: 7 , July 1999, Pages:738-748

7. Kato, K., Persistently Cashed B-trees, IEEE Transactions on, Volume: 15, Issue:
3, May-June 2003, Pages 706-720.

8. Pan Aihuam, Lku Chuntu, Real Time Analysis on Expert Systems, Proceeding of
the 3rd World Congress on Intelligent Control and Automation, 2000

9. J.-M. Yun,, S.-J. Ahn, J.-W. Chung, Web Server Fault Diagnosis and Recovery
Mechanism Using INBANCA, 2000, PP. 2467-2504.

10. K. Ohta, T.Mori, N.Kato, H.Sone, G.Mansfield, Y.Nemoto, Divideand Conquer
Technique for Network Fault Management, Proceedings of ISINM97, 1997

11. Kohei Ohta, Takumi Mori, Nei Kato, Hideaki Sone, Glenn Mansfield, Yoshiaki
Nemoto, Divide and Conguer Technique for Network Fault Management, Proceed-
ings of ISINM97, 1997

12. Taein Hwang, Seongjin Ahn, Jin Wook Chung, A study on the rules and algo-
rithm for the diagnosis and recovery of routing configuration, SCI 2000, World
Multiconference on Sys-temics, Cybernetics and Informatics 4(2000) 137-141

Transient Time Analysis
of Network Security Survivability Using DEVS

Jong Sou Park and Khin Mi Mi Aung

Dept. of Computer Engineering,
Hankuk Aviation University, Seoul, Republic of Korea

{jspark,maung}@hau.ac.kr

Abstract. We propose the use of discrete event system specification
(DEVS) in the transient time analysis of network security survivability.
By doing the analysis with the time element, it is possible to predict
the exact behaviors of attacked system with respect to time. In this
work, we create a conceptual model with DEVS and simulate based on
time and state variables change when events occur. Our purpose is to
illustrate the unknown attacks’ features where a variety of discrete events
with various attacks occur at diverse times. Subsequently, the response
methods would be performed more precisely and this is a way to increase
the survivability level in the target environment. It can also be used
to predict the survivability attributes of complex systems while they
are under development and preventing costly vulnerabilities before the
system is built.

1 Introduction

Survivable Information System is intended to tolerate the mission critical func-
tions in face of known and future attacks. It is very critical to simplify design,
model and analysis of such a system. This work emphasizes the transient time
analysis of survivability using Discrete Event System specification (DEVS) to
predict the exact behavior in a system with respect to time. We have studied
the rejuvenation as a proactive approach of survivability [1, 2]. To perform the
rejuvenation, the timing is incredibly important. Our approach is dynamic sys-
tem where a variety of discrete events with various attacks occur at diverse times
and our system will respond to those events. Survivability system with unknown
attacks’ features cannot be precisely illustrated by a mathematical model that
can be estimated analytically. DEVS can be used as the core formalism, in or-
der to enable proof of correctness. EASEL [5, 6] is currently a discrete event
simulation language with limited support for continuous variables. Moitra et.al.,
[7] were modeling survivability of networked systems. They developed a model
to evaluate the tradeoffs between the cost of defense mechanisms for networked
systems and resulting expected survivability after a network attack. They men-
tioned a major need in survivability management is for more data collection so
that managers can better assess survivability and security and can make better
decisions regarding the costs and benefits of alternative defense strategies for

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 607–616, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

608 Jong Sou Park and Khin Mi Mi Aung

their systems. Chung et.al., [3] had simulated intrusions in sequential and par-
allelized forms and they presented an algorithm for automatically transforming
a sequential intrusive script into a set of parallel intrusive scripts, which sim-
ulate a concurrent intrusion. But parallelizing an intrusive script is difficult in
practice because of the rich set of shell-level commands and various constructs
supported by the script language. F.Cohen [4] presented cause-effect model. He
discussed the limitations on modeling and simulation such as limits on accuracy
of the models, limits on the accuracy of the data upon which the simulation is
based and the ability to explore the simulation space through the use of multi-
ple runs of the simulator through the space. Based on those related and relevant
approach, our goals in this work are

– to create a conceptual model that emphasizes events and their relations to
one another with DEVS,

– to simulate based on time and state variables change when events occur
rather than the way normal time changes continuously,

– to evaluate the survivability of systems and services, as well as the impact
of any proposed changes on the overall survivability of systems, and

– to simulate the effects of attacks, accidents, and failures, and can be used to
predict the survivability attributes of complex systems while they are under
development, preventing costly vulnerabilities before the system is built.

In this paper, first we describe our proposed model and then we give a brief
introduction to DEVS. In section four, we denote DEVS Simulation and Network
Security Survivability.

2 A Proposed Model

We have studied the fusion method for survivability (Fig. 1) and we have im-
plemented some modules in our previous work [1]. We had solved the second
portion of our work, transient state analysis, using semi-Markov process and

Fig. 1. A Proposed Model.

Transient Time Analysis of Network Security Survivability Using DEVS 609

Weibull distribution function for survivability in our previous work [2]. In this
work, we address the transient time analysis using DEVS and our experiences
show that DEVS can be used as the core formalism, in order to enable proof
of correctness rather than illustrating by a mathematical model that can be
estimated analytically.

We consider five states such as healthy state, monitoring state, infected state,
rejuvenating state (schedule and ad hoc) and failure state. As shown in (Fig. 1),
the system would get back to healthy state, even after infected, by means of
three ways (solid lines). And the system would be totally failed in three ways
(dotted lines). We analyze these two situations with two models, named, Healthy
Monitoring Rejuvenation (H-M-R) model and Healthy Monitoring Infected Re-
juvenation (H-M-I-R) model.

2.1 DEVS Formalism

DEVS is the formalism that allows a modeler to specify a hierarchically de-
composable system as a discrete event model that can be later simulated by a
simulation engine. In DEVS, we have to specify the atomic models and the cou-
pled models. Detail descriptions of the atomic model, coupled model and DEVS
formalism can be found in [8, 9].

2.2 DEVS Simulation and Network Security Survivability

The most important purpose of DEVS formalism is that it provides a formal way
of how discrete event languages specify their discrete event system parameters.
By doing the analysis with the time element involved in it, it is possible to see
the exact behavior of an event in time. Therefore we utilize DEVS to analyze
the transient time in network security survivability.

The most important security approach for the survivable system is to provide
third generation security (3GS) mechanisms. We have constructed our 3GS strat-
egy and methodologies and we illustrate it with the system entity structures, a

Fig. 2. System Entity Structures for Network Security.

610 Jong Sou Park and Khin Mi Mi Aung

Fig. 3. Pruned Entity Structure of 3 GS.

Fig. 4. DEVS models for Transient Time Analysis.

structured knowledge representation scheme (Fig. 2). The root entity network-
security has an aspect node that implies the descendants (1GS, 2GS and 3GS)
can be coupled.

Pruning is required to create a pure SES, no specialization and at most one
aspect under each entity. (Fig. 3) shows a Pruned Entity Structure (PES) of 3
GS. It specifies a hierarchical discrete-event model, which is reduced structure
by pruning the SES according to the objectives of our study. In this work, we
address transient time analysis with DEVS. (Fig. 4) shows an overall system
model of H-M-R and H-M-I-R.

Our response methods for network security survivability are schedule reju-
venation and ad hoc rejuvenation. In the next section, we model and simulate
these behavior atomic models.

2.3 Transient Time Analysis
on DEVS-Based Schedule Rejuvenation Model

We have collected the features from the event list and it has prepared by using
classifiers [1]. In the simulation cycle, we insert the features to monitor the
system. And there has an international transaction and it will output as alerts.
Since the output is normal-alerts then the simulation will end by performing
schedule rejuvenation. And we evaluate the performance for this model.

Transient Time Analysis of Network Security Survivability Using DEVS 611

Fig. 5. State Transition Diagram of H-M-R model.

Table 1. Schedule rejuvenation model events and states.

External transition State Internal transition

features healthy
monitoring normal-alerts

performance sched-rejuv

DEVS-Based Pseudo Code of Schedule Rejuvenation Model

State variables
’healthy, ’monitoring, ’sched-rejuv

External transition function
if current state is ’healthy,
then features inserts from event list
and set state as ’monitoring during processing-time

Internal transition function
if current state is ’monitoring and output is normal-alerts
then set state as ’sched-rejuv during processing-time
else if current state is ’sched-rejuv
and output is performance
then change state to ’healthy

Input function
if current state is ’healthy
then insert features from event list

Output function
if current state is ’monitoring
then check features and send alerts
if current state is ’sched-rejuv
then send performance

612 Jong Sou Park and Khin Mi Mi Aung

Fig. 6. Time-line analysis of H-M-R model.

Fig. 7. State Transition Diagram of H-M-I-R model.

Table 2. Ad hoc rejuvenation model events and states.

External transition State Internal transition

features healthy
monitoring abnormal-alerts

decision infected
adhoc-rejuv Results

Transient Time Analysis of Network Security Survivability Using DEVS 613

2.4 Transient Time Analysis
on DEVS-Based Ad Hoc Rejuvenation Model

In this model, we have considered the ad hoc rejuvenation method, as the output
is abnormal-alerts. We implement the event manager, which can give the decision
in the specific infected cases. Each type of event has its own routine, to be run
when the event takes place.

DEVS-Based Pseudo Code of Ad Hoc Rejuvenation Model

State variables
’healthy, ’monitoring, ’infected, ’adhoc-rejuv, ’failure

External transition function
if current state is ’healthy

then features inserts from event list
and set state as ’monitoring during processing-time

Internal transition function
if current state is ’monitoring
and output is abnormal-alerts
then set state as ’infected during processing-time
else if current state is ’adhoc-rejuv
then check results

Input function
if current state is ’healthy
then insert features from event list
if current state is ’infected
then insert decisions from event manager

Output function
if current state is ’monitoring
then check features and send alerts
if current state is ’adhoc-rejuv
then check decisions and send results

3 Simulation Results for Network Security Survivability

The presented experiment demonstrates the network security survivability with
H-M-R and H-M-I-R models. 41 Collected features [1] are inserted from the event
list and the simulation cycle will be in processing time while it was monitoring.
Depending upon the output alerts the elapsed time will be varied case by case.

614 Jong Sou Park and Khin Mi Mi Aung

Fig. 8. Time-line analysis H-M-I-R model.

Simulation Results for Network Security Survivability H-M-R Model

Simulation Results for Network Security Survivability
after 25 Simulation Runs:
- -
Total number of features = 41
Mean Monitoring Time = 0.2231 min
Mean Monitoring Time of Phase1 (H-->M) = 0.2231 min

Duration = 0.2231 min

H-M-R Model
Simulation Results for Network Security Survivability

after 25 Simulation Runs:
- -
Total number of features = 41
Mean Monitoring Time = 0.2231 min
Mean Monitoring Time of Phase1 (H-->M) = 0.2231 min
Processing Time of Phase3 (M-->RS) = 15.229 min

Duration = 15.4521 min

H-M-I-R Model
Simulation Results for Network Security Survivability

after 25 Simulation Runs:
- -
Total number of features = 41
Mean Monitoring Time = 0.2231 min
Mean Monitoring Time of Phase1 (H-->M) = 0.2231 min
Processing Time of Phase3 (M-->I) = 5.349 min
Processing Time of Phase4 (I-->RA) = 18.115 min

Duration = 23.6871 min

Transient Time Analysis of Network Security Survivability Using DEVS 615

Two models of network security survivability are verified using the time-
line analysis and the coupled model information. From this analysis, we get the
useful information such as the system behaviors, how much time to wait before
applying the schedule or ad hoc rejuvenation and how a system responds to each
event.

4 Conclusion and Further Works

We applied DEVS formalism to analyze the transient time of Network Security
Survivability and developed an associated simulation environment by employing
execu-tion of H-M-R and H-M-I-R models. We have utilized DEVS not only for
predicting performance but also for analyzing behavior of complex system. In
Section 4, DEVS time-line analysis is used to design and analyze the behavior of
the models. We used the DEVS couple model specification to create a coupled
model. Using DEVS, we are able to have as a feature of time in the design
and analysis. It helps us how a system responds to an event, and it also guides
us the behaviors of the system. We can fully analyze the transient time before
performing our response methods to each attack. This work is a paradigm of
property-based types. And our models are discrete event simulation with limited
support for continuous variables in arbitrary time. These models use arbitrary
time units. While the time units are thought to be relatively consistent, further
work is required for validated real-world values. We are implementing the real
time simulation that will represent the network security survivability to handle
non-deterministic event time models.

Acknowledgement

This research has been supported by Information Technology Research Center
(ITRC) Project of Ministry of Information and Communication, Republic of
Korea.

References

1. Aung, K. M. M., Park, J. S.: Software Rejuvenation Approach to Security Engineer-
ing, ICCSA 2004, Special Issue of Lecture Notes in Computer Science, Vol. 3046,
Perugia, Italy (2004) 574–583

2. Aung, K. M. M.: The Optimum Time to Perform Software Rejuvenation for Sur-
vivability, IASTED, SE2004, Int. Conf., Innsbruck, Austria (2004) 292–296

3. Chung M., Mukherjee B., Olsson R.A., Puketza N.: Simulating Concurrent Intru-
sions for Testing Intrusion Detection Systems: Parallelizing Intrusions, Proc. of the
18th NISSC, 1995

4. Cohen F.: Simulating Cyber Attacks, Defenses, and Consequences, IEEE Sympo-
sium on Security and Privacy, Berkeley, CA, 1999

5. Fisher, D. A.: Design and Implementation of EASEL-A Language for Simulating
Highly Distributed Systems. Proceedings of MacHack 14, the 14th Annual Confer-
ence for Leading Edge Developers. Deerborn, MI, June 24-26, 1999

616 Jong Sou Park and Khin Mi Mi Aung

6. Fisher, D. A.: Survivability and Simulation. Third Information Survivability Work-
shop (ISW-2000). Boston, MA, October 23-26, 2000

7. Moitra S.D., Konda S.L: Simulating Cyber Attacks, Defenses, and Consequences,
IEEE Symposium on Security and Privacy, Berkeley, CA, 1999

8. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation, Academic
Press, London, UK and Orlando, FL, 1984

9. Zeigler, B.P.: Object-Oriented Simulation with Hierarchical Modular Models: Intel-
ligent Agents and Endomorphic Systems, Academic Press, Boston, MA, 1990

{tynam,hglee,iamready}@etri.re.kr

cmhan@hufs.ac.kr

•

•

•

It21c@korea.ac.kr

rsato@sk.tsukuba.ac.jp

An Architecture Modelling
of a Workflow Management System�

Dugki Min1 and Eunmi Choi2

1 School of Computer Science and Engineering, Konkuk University,
Hwayang-dong, Kwangjin-gu, Seoul, 133-701, Korea

dkmin@konkuk.ac.kr
2 School of Business IT, Kookmin University,

Chongnung-dong, Songbuk-gu, Seoul, 136-702, Korea
emchoi@kookmin.ac.kr

Abstract. This paper presents the design and implementation of a
workflow management system by which one can determine a work process
at runtime. Our workflow management system consists of a build-time
part and a run-time part. The build-time part employs a process defini-
tion model that can support various types of work processes. A process
definition is described in XML and converted to objects at runtime. In
order to extend the function of activity, such as condition checking and
invoked applications, we allow inserting real java code in XML process
definition. The core of run-time part is a workflow engine that schedules
and operates tasks of a work process according to a given process defini-
tion. Activities and transitions are designed as objects that have various
execution modes, including simple manual or automatic modes.

1 Introduction

Dynamics of business process will be more popular in the age of so-called re-
altime business. According to the Gartner’s prediction [13], in 2012 the service
development cycle will be shorten within a day based on the Web Service tech-
nologies [11,12]. That is, when an e-Business idea comes in mind, the e-Business
service should be started within a day unless the business chance will be lost (i.e.
realtime business). Therefore, the realtime business systems should be developed
fast by integrating existing Web Services, instead of developing from the scratch.
In order to support this kind of realtime business, the e-Business systems should
be developed so as to add, delete, and change easily business processes that are
created in a day.

The workflow management system [9,10] gives a solution to the problem of
business dynamics. The workflow management system separates business pro-
cess logic from its execution environment. There have been three standardization

� This work was supported by the Korea Science and Engineering Foundation
(KOSEF) under Grant No. R04-2003-000-10213-0. This work was also supported
by research program 2004 of Kookmin University in Korea.

T.G. Kim (Ed.): AIS 2004, LNAI 3397, pp. 645–654, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

646 Dugki Min and Eunmi Choi

specifications related to workflow management. The first one is the workflow
reference model that had been proposed by the WfMC [1,2,3]. The workflow ref-
erence model introduces a workflow management framework with sex standard
interfaces that make its core components interop-erable [4]. This framework has
been used as the basis of the following workflow management systems. Our work-
flow management system gets many design idea from the WfMC’s. The second
one is the Workflow Facility of OMG [7], which is a part of object management
architecture (OMA). The Workflow Facility proposes an object-oriented archi-
tecture of workflow management system that is based on the WfMC’s workflow
reference model. The third one is the SWAP of IETF [5,6]. The SWAP (Simple
Workflow Access Protocol) sends an execution request encoded in XML on top
of HTTP. The concept is very similar to SOAP of the Web Service technology.
In order to support the workflow mechanism, the SWAP specifies a number of
standard methods in XML.

This paper presents the design and implementation of a workflow manage-
ment system by which one can determine a work process at runtime. Our work-
flow management system consists of a build-time part and a run-time part. The
build-time part employs a process definition model that can support various
types of work processes. A process definition is described in XML [8] and con-
verted to objects at runtime. In order to extend the function of activity, such as
condition checking and invoked applications, we allow inserting real java code
in XML process definition. The core of run-time part is a workflow engine that
schedules and operates tasks of a work process according to a given process
definition. Activities and transitions are designed as objects that have various
execution modes, including simple manual or automatic modes. The engine sup-
ports various transition types and relevant data types. In addition, our system
provides monitoring and notification services for auditing and managing the
progress of business processes.

Section 2 presents the structure of our workflow management system. In
Section 3, we present the architecture of build-time system. The architecture
of run-time system is described in Section 4 that is the encore of the workflow
management system. We summarize in Section 5.

2 The Structure of Workflow Management System

Our workflow management system consists of three parts: the build-time man-
agement part that is used to define a business process, the run-time management
part that executes instance of business process and the human interaction part
that controls IT invoked application for processing various activity steps. The
build-time management part is used to define a business process (or workflow
process) that consists of a number of activities. In our build-time management
system, a process definition is an instance of process definition model that can
define a various types of business processes. A process definition is described in
XML and stored in a repository in build time. A process definition describes a
workflow of business process in terms of activities, transitions, conditions, in-

An Architecture Modelling of a Workflow Management System 647

voked applications and roles of persons. When a process instance is created by
the run-time workflow engine, the corresponding XML process definition is used
as an input of the run-time engine. Inside the run-time management part, i.e.
workflow engine, the XML process definition is converted to process definition
objects and used in an object-oriented fashion.

The run-time management part is the major part of workflow management
system that creates process instances and executes them according to the process
definition defined in build time. When we use the term ‘workflow engine’ in a
broad sense, it means the run-time management part as a whole. In a narrow
sense, a workflow engine represents a WfEngine component that will be described
in Section 4. When a request of process creation is arrived, the run-time workflow
engine parses the process definition and manages a process instance according to
the process definition. While executing a workflow process, it sequences activities
and manages the scheduled activities, arranging work items to user’s work lists
and invoking related applications that are needed for activity execution.

The runtime engine interacts with the external environment in order to ex-
ecute an activity. The external environment might be a person or an external
application that can be invoked by the workflow engine. For human interaction,
the workflow engine creates work items and arranges them to the person who is
in charge. When a work item is processed by a person through a worklist han-
dler, an external application might be invoked. Related to the interaction with
the external environment, our workflow management framework provides mech-
anisms to invoke external application, to pass the relevant data to the invoked
applications and to check the execution state of invoked applications.

In this research, we design and implement a workflow management system
under a distributed environment. The design of the workflow management is de-
signed in component-based, considering extensibility and scalability. Since most
of B2B applications usually execute on different computers, its implementation
is in Java for achieving platform independent portability. Also for dealing with
the network failure problem that may occur while executing a long-lived busi-
ness process, our system is developed based on our reliable UDP communication
infrastructure.

3 The Architecture of Build-Time System

Figure 1 shows the workflow process model that is used in our workflow man-
agement system. The workflow process model consists of three major parts: the
business process graph part, the application part, and the organization part. The
Business Process Graph Part presents the structure of a workflow process in a
graph. A node of the graph indicates an activity that should be performed in each
step within a work process. An activity can be any type of task that is a trans-
actional task, a human interaction web task, or an automatic execution task.
Also, an activity can be a sub-process that is composed of a set of subtasks. A
link of the graph indicates a transition between activities. The Application Part
is to decide what to do in specific in executing an activity and how to handle

648 Dugki Min and Eunmi Choi

Fig. 1. Definition Model of Workflow Process.

the results. An application object presents the actual application program or
a module to be executed. The Relevant Data which is in the Application Part
contains the data that are needed to execute a task. The Organization Part is to
define who is going to execute activities. It is composed of using participators,
groups, and roles and used for authentication and authorization management.

We use XML [10] for presenting the workflow process model in a computer.
Figure 2 shows the XML structure of workflow process model presented in Fig-
ure 1. Tags in the XML format are as follows. The Add Process Definition tag
lets the workflow engine add more process definitions. As its attributes, it con-
tains the Process Definition tag. The Process Definition tag is the top most tag
of a workflow process definition. It defines a workflow process. It includes a
number of workflow features, control flows of workflow, and tasks. The Activity
tag defines each activity in workflow process. Each activity connects the person
who performs the activity task to the application that is to be invoked for the
task. The Automation Mode tag of an activity is used to select an operation
mode, in which the activity is executed automatically by a workflow engine or
manually through human interactions. The sub tags of the Automation Mode
tag define the necessary operations before executing activities (Start Mode tag),
while executing activities (Execution Mode tag), and when to terminate activi-
ties (Finish Mode tag). For automatic execution, the condition code in Java is
periodically checked to examine the current status. When the condition becomes
true, the next operation is automatically executed.

The Transition tag defines activity transitions. According to the type of
transition, a transition can have a number of input types and output types.
The input types are ‘single’, ‘join xor‘, ‘join and’, ‘join or’, ‘join replicated xor‘,
‘join replicated and’, and ‘join replicated or’. The output types are ‘single’,
‘split xor‘, ‘split and’, ‘split or’, and ‘split replicated’. Any type of workflow
can be constructed as a concatenated combination of various input and output
types. The Input Activity tag and Output Activity tag define inputs and outputs
of transitions. The number of inputs and outputs can be more than one. As
the properties of Input/Output activity tag, there are the activity IDs and the
transition conditions to/from an activity.

An Architecture Modelling of a Workflow Management System 649

Fig. 2. The XML Structure of Process Definition.

The Participant tag and the Group tag define the participants and the groups
that participate in the workflow process. The Role tag defines the role of partic-
ipants or groups in an activity execution of workflow process. The Application
tag defines applications invoked for activity executions. There are several types
of an invoked application: local process calls, shell scripts, ORB calls, remote ex-
ecution calls, message passing, transactions, component calls, web applications,
and workflow embedded codes.

4 The Architecture of Runtime System

This section introduces the architecture of workflow engine that is the core part
of workflow management system. The workflow engine manages the progress of
workflow process. It parses the process definition and manages a process instance
according to the process definition. While executing a workflow process, it se-
quences activities and schedules work items to user’s work lists. It also has an
ability to invoke related applications for executing a specific activity.

4.1 The Structure of Workflow Engine

Figure 3 presents the architecture of our workflow engine. The workflow engine
consists of main six modules: Definition Repository Module, Process Defini-
tion Module, Enactment Module, Organization Manager Module, Monitor Agent

650 Dugki Min and Eunmi Choi

Fig. 3. Structure of Workflow Engine Classes.

Module, and Notification Manager Module. These six modules can be classified
into three groups according to their functionalities. The Definition Repository
Module, the Process Definition Module, and the Organization Manager Module
are in one group. The Enactment Module is another group. The Monitor Agent
Module and the Notification Manager Module are in the last group.

The first group, including the Definition Repository Module and the Pro-
cess Definition Module, takes a role of creating process definition objects. When
the workflow engine initially starts at build time, the WfDefinitionRepository
reads workflow definition XML, creates WfDefinition objects with the help of
WfDefBuilder, and manages the WfDefinition objects, so that the WfDefini-
tionRepository can manage workflow process definition objects. When creating
WfDefinition objects, the WfDefinitionRepository delegates the creation task to
the WfDefBuilder and the WfDefBuilder delegates again the XML analyzing
tasks to the XMLParser. Thus, the WfDefinitionRepository brings the WfDef-
inition objects with the helps of the WfDefBuilder and the XMLParser. We
utilize the dynamic class loader in order to redefine the process definition ob-
jects dynamically. Whenever the XMLParser finds Java codes in the process,
the XMLParser uses dynamic class loader in Java. When compiling the code,
it uses Java compiler information written in the WfConfiguration. The work-
flow reference model defined in XML is converted to a number of classes whose
template classes are defined in the Process Definition Module.

The classes in the Process Definition Module are mapped to tags of the
XML workflow process model described in Figure 2. The classes provide tem-
plates that can be use to create process definition objects by the WfDefBuilder.
The WfDefinition class presents workflow process definition and manages other

An Architecture Modelling of a Workflow Management System 651

internal objects. The WfActivity class describes a task in the workflow process.
The WfTransition class connects inputs and outputs of WfActivity class, so that
it can link two or more activities. It provides a function that can search for
transitions that are connected to a given input activity at run time. The Wf-
Condition is the interface to check condition when automatically changing the
status from WfTransition to WfActivity. The WfApplication class contains the
information of application program that is executed for an activity, such as the
URL of the application program. The WfRelevantData class shows data used
in the workflow process. It contains data name, format, and initial values. The
roles of WfParticipant, WfGroup, and WfRole are similar to those of the corre-
sponding tags in the XML workflow model. The WfParticipant, WfGroup, and
WfRole are parts of the Organization Manager Module that provides manage-
ment of users, groups, and roles. It checks if a user is in the proper role, and lists
all users that are in a given role.

The next group, having only the Enactment Module, is the main part of
workflow engine. The Enactment Module is composed of three managers that
are used by the WfEngine to create and progress process instances. The WfIn-
stanceManager is in charge of creation, scheduling, and managements of a pro-
cess instance. It controls the progress of an instance, managing the instance’s
internal state. It also sequences and executes activities according to the process
definition, invoking related applications. The state of activity is also managed
by the WfInstanceManager. How to manage the states of process instances and
activities is explained in detail in the next section. When the WfEngine creates
a process instance through the WfInstanceManager, it also creates a context
through the WfContextManager. A context holds the relevant information that
should be shared by the consecutive activities of a process instance. A context
includes a security context, a transaction context, or data to be transmitted be-
tween consecutive activities. For executing interactive activities, the WfEngine
calls the WfWorklistManager to create work items that are sent to a person or
a group of persons who have the role of taking the interactive activities. The
WfWorklistManager manages the progress of each work item so that the work
item could be done completely. A workitem can be implemented in various for-
mats, such as an email or a process call, depending on the application domain
and the system environment.

The last group contains the modules that provide additional services for the
workflow engine. Included are the Monitor Agent Module and the Notification
Manager Module. The WfMonitorAgent collects the states of workflow engine
periodically or on-demand. The collected state logs are used to analyze the cor-
rectness or speed of the on-going work processes. It can also report the current
state of workflow engine according to a predefined schedule. The WfNotification-
Manager is used by the workflow engine to notify some event messages generated
by the process instance. The generated events are distributed to the event lis-
teners registered to the WfNotificationManager. It is applied to send messages
to associated users when having special event occurrence, such as terminating
business processes.

652 Dugki Min and Eunmi Choi

4.2 Scheduling of Workflow Process

One of the important tasks performed by a workflow engine is workflow process
scheduling. The WfInstanceManager of the Enactment Module is in charge of
this scheduling task. When a client application requests to start a business pro-
cess, the WfEngine (i.e. workflow engine) delegates the task to the WfInstance-
Manager. Receiving the request message of starting process, the WfInstance-
Manager creates a process instance and manages the lifecycle of the process
instance, controlling its process scheduling. The main task of workflow process
scheduling is to manage the states of a process instance and its activities. When
the WfInstanceManager invokes the instance state transition method, it checks
the state of workflow process. Based on the current instance state, the WfIn-
stanceManager makes the process instance moves to the next step, adds/deletes
workitems or executes invoked applications.

There exist two states inside the workflow instance. One is the state of process
instance itself, and the other is the state of activities that are executing for the
process instance. The state of instance becomes the Initiated state when it is
activated as shown in Figure 4 (a). In the Initiate state, the instance waits for
transition to the Running state. The state transition from the Initiated state
to the Running state can occur automatically or human-interactively. During
the Running state, the process instance progresses its task. According to the
process definition, it schedules the next activities and executes the scheduled
activities. Detailed description of the state changes of activities is in the next
paragraph. A process instance goes to the Suspended state, when it is temporarily
paused waiting for an occurrence of a specific event. When a process instance is
abnormally terminated, it goes to the Terminated state, and when successfully
done, the Complete state. After the Terminated state or Complete state, the
instance goes to the Dead state, where it releases references and memory back
to the system and finishes the instance.

(a) State Diagram of Process Instance (b) State Diagram of Activity

Fig. 4. Scheduling of Workflow Process.

An activity in execution has six states as in Figure 4 (b). The Initiated state
is the state where an activity is newly created, but not in execution yet. Depend-
ing on the Start mode of the activity, which is described in process definition
XML, there are two ways to move to the Active state. If the Start mode is set
to ‘interactive’, the activity waits for a human response. If the Start mode is set
to ‘automatic’, the activity checks the starting condition and becomes Active if
satisfied. The Active state is another pre-stage before executing an activity. If

An Architecture Modelling of a Workflow Management System 653

the Execution Mode of activity is automatic, the activity executes the invoked
application and goes to the Running state. If the Execution Mode is interactive,
the activity arranges a workitem and goes to the Running state. The Running
state is the state where the activity is in execution. In the Running state, the
activity checks the finishing condition. If the finishing condition is satisfied, the
state of activity changes to the Complete state. The Complete state checks the
Finish mode. If the Finish mode is interactive, all the created workitems are all
deleted. If the Finish mode is automatic, the Complete state moves to become
the Transition state. It is necessary to stay in the Transition state before acti-
vating the next activity, since the complete activity needs to be satisfied with
specific conditions to transfer and also the next activity needs to be satisfied
with the precondition to be activated. Thus, to consider the Transition state,
there are more extra kinds of states: Prior and Post Transition states. The Prior
Transition state checks the current activity and finds the proper next transition
that accepts this activity as the input activity. By observing the input condi-
tion of transition, the Prior Transition decides to transfer the current working
activity. According to the given various input values, types, and the expected
conditions, it is necessary to check the prior conditions to enter the next ac-
tivity. If the condition is satisfied, it applies to the Post Transition state. The
Post Transition state checks output conditions of transition. As done for input
cases, the conditions need to be checked according to the given various output
values and types. If the output conditions are satisfied, the current Transition
state moves to the next step and activates another activity, and the next activity
becomes Initiated state.

5 Conclusion

In this paper, we designed and implemented a workflow management system to
allow the workflow of tasks to be changed dynamically as well as statically, and
to guarantee to support processes for automatic and asynchronous executions
among processes. We focus on the workflow management system in terms of the
build-time and run-time managements. The build-time management concerns
tasks related to workflow process definitions. We defined the workflow process
model, and proposed the mechanism to represent meta data in XML. Consider-
ing execution of workflow operation based on the workflow process definition, we
handled to generate the processing objects from the XML models. Also we de-
signed process definition to cooperate with the workflow engine by using XML
that becomes the Web information standard over Web. In terms of run-time
management, we presented the structure of workflow engine that is the encore
of run-time workflow management. The engine proposed consists of parsing and
processing workflow process definition, managing process instances, sequencing
activities, and progressing workflow schedules. Regarding schedules, we handled
workflow process and activity state managements. Our workflow management
system considers reusability of distributed components, and integrity of infor-
mation systems for various heterogeneous information handling. Also it is pos-

654 Dugki Min and Eunmi Choi

sible to support various workflow services of B2B on Web, for example, parallel
structure, internal container structure, and cycle structure. We implemented our
workflow management system in Java, so that the workflow engine is also able
to achieve platform-independent and portable workflow services.

References

1. Workflow Management Coalition: Workflow Standard Interoperability Abstract
Specification, WfMC-TC-1012, Oct. (1996)
(http://www.wfmc.org/standards/docs/if4-a.pdf)

2. Workflow Management Coalition: Workflow Reference Model. WfMC-TC-1003,
1.1, 19 Jan (1995) (http://www.wfmc.org/standards/docs/tc003v11-16.pdf)

3. Workflow Management Coalition: Workflow Standard Interoperability. Wf-XML
Binding, WFMC-TC-1023, May (2000)
(http://www.aiim.org/wfmc/standards/docs/ Wf-XML-1.0.pdf)

4. David Holliingsworth: workflow Management Coalition: The Workflow Reference
Model Jan (1995) (http://www.aiim.org/wfmc)

5. Internet Engineering Task Force(IETF): Requirements for Simple Workflow Access
Protocol, August (1998) (http://www.ietf.org)

6. Keith Swenson: Simple Workflow Access Protocol (SWAP). Internet-Draft, 7 Aug.
1998, http://www.ics.uci.edu/ ietfswap

7. Object Management Group(OMG): Workflow Management Facilit, Revised sub-
mission, 4 July (1998) (ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf)

8. W3C: Extensible Markup Language (XML). REC-xml-19980210, 1.0, 10 Feb.
(1998)

9. John A. Miller, Devanand Palaniswami, Amit P. Sheth, Krys J. Kochut and Harvin-
der Singh: WebWork: METHOR2’s Web-Based Workflow.

10. John A. Miller, Amit P. Sheth, Krys J. Kochut and Devanand Palaniswami: The
Future of Web-Based Workflows, The University of Georgia (1998)

11. T. Sollazzo, S. Handschuh, S. Staab, M. Frank: Semantic Web Service Architecture-
Evolving Web Service Standards toward the Semantic Web. Proc. of the 15th
International FLAIRS Conference. Pensacola, Florida. May 16-18, (2002) AAAI
Press.

12. Guenter Orth: The Web Services Framework: A Survey of WSDL, SOAP and
UDDI. Mater’s Thesis, Information System Institute, Vienna University of Tech-
nology. May (2002)

13. Gartner’s Report: Enterprise IT Architecture and the Real-Time Enterprise
(http://www.tibco.com/mk/geitaw.jsp)

It21c@korea.ac.kr

khan@inha.ac.kr

…
∈ ∈ ∈

∈ ∈

Algorithm 1 AssignLevel ()

for each node n ∈ V
n.nodeLayerLvl = -1;

for each node n ∈ V
if(not (n has parent))
AssignNodeLevel(n, 0);

AlignBottom();

Algorithm 2 AssignNodeLevel (node, nodeLvl)

if(node.nodeLayerLvl < nodeLvl) {
node.nodeLayerLvl = nodeLvl;
for each downward edge e of node
AssignNodeLevel(child (node), nodeLvl+1);

}

Algorithm 3 AlignBottom ()

for each node n ∈ V {
if(n.nodeLayerLvl != n.minChildLvl-1)
n.nodeLayerLvl = n.minChildLvl-1;

}

Algorithm 4 AddDummy()

for each node n ∈ V {
for each downward edge e of n {
if (n.nodeLayerLvl+1 < child(n).nodeLayerLvl+1)
CreateDummyNodes;

}
}

∈
=

γ ρ
=

==

⋅=γ

==

⋅=ρ

⋅=
+=

−

=α β
αβ

Algorithm 5 baryCenter(sourceLayer, targetLayer)

for each node n ∈ sourceLayer
n.calculateBCValue_source(targetLayer);

for each node n ∈ targetLayer
n.calculateBCValue_target(sourceLayer);

if(isNeedSort) {
sourceLayer.sortbyBCValue;
return true;

} else return false;

Algorithm 6 calculateBCValue_target(targetLayer)
BCValue = 0; edge_cntSub = 0;

for each node n ∈ targetLayer
if(n has upward edge) {
BCValue += n.rowIdx;
edge_cntSub++;

}
}

BCValue /= edge_cntSub;

Algorithm 7 calculateBCValue_source (sourceLayer)
BCValue = 0; node_layer_cntSub = 0;
for each node n ∈ sourceLayer {
if(n has downward edge) {
BCValue += n.colIdx;
edge_cntSub++;

}
}

BCValue /= edge_cntSub;

Algorithm 8 getGroupCnt ()
groupCnt=0;
for each group g in targetLayer
for each node n ∈ g
for each upward edge e of n {
if(leftCrossing(e)>groupCnt) groupCnt=leftCrossing(e);
if(rightCrossing(e)>groupCnt)groupCnt=rightCrossing(e);

}
groupCnt++;

Algorithm 9 AssignGroupCnt ()
for each upward node nij connected to group gi of targetLayer
{
Assign node ni1 to group g1;//nij: j-th upward node of gi
for each node nij {
Assign node nij to group gx+y, where
x = group number to which (j-1)th node is assigned.
y = 1 if there is an edge crossing between (j-1)th node

and j-th node.
y = 0 otherwise.
if (x+y > total number of groups)

 The group number of the j-th node is 1;
}

}

+=

=
α

α ==

−

=β
αβα

−

=

=
α

α == +=β
αβα

i F

{Min.Hong,Anis.Karimpour-Fard,Steve_Russell,Larry.Hunter}
@UCHSC.edu

•

•
•
•
•
•
•
•

{hkkang,ljo,hsjeon,cheol}@kku.ac.kr

doohyun@konkuk.ac.kr

rdoh@gukwon.chungju.ac.kr

wskang@anu.andong.ac.kr

≤ ≤

≤ ≤

0,400

0,450

0,500

0,550

0,600

0,650

0,700

0,750

0,800

0,850

0,900

C O NDO C S-1 C O NDO C S-2 C O NDO C S-3 C O NDO C S-4 C O NDO C S-5

kind of system

category76/best

category12/best

category76/sec

category12/sec

-

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

vector87 vector150 vector768

kind of concept vector

category76/best

category12/best

category76/sec

category12/sec

{Mamadou.seck,Claudia.frydman,Norbert.giambiasi}@lsis.org

−
−

−
−

−
−

−
−
−
−

−

−

−
−
−

−

−

{amine.hamri,norbert.giambiasi,claudia.frydman}@lsis.org

φ. φ

Φ Φ

Φ,

Φ), (Φ 0), (Φ Φ Φ)

 (Φ 0)

δ δ λ

δ δ λ

•

•

−

−

δ δ λ

δ δ λ

− Φ) Φ)

Φ

≠

Φ, Φ, Α)

− ,

δ
δ Φ) Φ) Φ) Φ)

δ) = (δ
 =

δ))
=

(δ =

[]
λ

λ) λ)
λ (λλ)

λ)
−
−

 (λλ
).

δ

[]
Φ,Φ,

δ ((Φ Φ,) (Φ Φ,) .

Min_Max_DEVS_Simulator:
variables:
parent // parent coordinator
tl: real // time of last event
tf: real // time of last faster event (x,fast)
tl: real // time of last slower event (x,slow)
tn: real // time of next event
e: real // elapsed time
Min-max DEVS // associated model with total states
 when receive i-message (i,t) at time t

 tl=t
 tn=t+Min(D(initial state))
 when receive *-message (*,t) at time t:
 // the simulator computes the output function and
 // carries out the internal transition for faster or
 // slower systems according to the current state of
 // the internal model
 If (t≠tn) then error: bad synchronization
 If (si=sj) then y=(λ(sj),fast)
 send y-message (y,t) at time t
 sj=δint(sj)
 the current state of the internal model:
 (si,sj,autonomous)
 tl=t
 tn=t+(Max(D(si))-Min(D(si)))+(ts–tf)
 If (si,sj,fast) then y=(λ(sj),fast)
 send y-message (y,t) at time t
 sj=δint(sj)
 the current state of the internal model:
 (si,sj,passive) if sj is passive state
 (si,sj,autonomous) if sj is active state
 tl=t
 tn=t+Min(sj)
 If ((si,sj,autonomous) / si ≠ sj) then
 y=(λ(si),slow)
 send y-message (y,t) at time t
 si=sj
 the current state of the internal model:
 (sj, sj, passive) if sj is a passive state
 (sj, sj, autonomous)if sj is an active state
 tl=t
 tn=t+Min(D(si))
 when receive x-message ((x,fast),t) at time t:
 // the simulator determines the current state of the
 // internal model to carry out the external state
 // transition for the faster system
 If not(tl≤t≤tn) then error: bad synchronisation
 e=t–tl
 If ((si, si, A) where si and δext(si, e, x) are
 passive states) then
 current state of the internal model:
 (si,δext(si, e, x), fast)
 tl=t
 tn=infinity
 If ((si, si, A) si is passive and δext(si, e, x)
 is active) then
 current state of the internal model:
 (si,δext(si, e, x), fast)
 tl=t
 tf=t
 tn=t+Min(δext(si, e, x))
 If ((si, sj,{autonomous,fast})) then
 current state of the internal model:
 (Φ, Φ, passive)
 tl=t
 tn=?
 when receive x-message ((x, slow), t) at time t:
 // the simulator carries out the external
 // transition for the slower system
 If not(tl ≤t ≤tn) then error: bad synchronization
 e=t–tl

 If ((si, sj, passive) where δext(si, e, x) is a
 passive state) then
 current state of the internal model:
 (δext(si, e, x), sj, passive)
 tl=t
 tn=infinity
 If ((si, sj, passive) where δext(si, e, x) is an
 active state) then
 current state of the internal model:
 (δext(si, e, x), sj, autonomous)
 tl=t
 tn=t+Max(δext(si, e, x))
 If ((si, sj, fast) where si is passive and sj is
 active state) then
 current state of the internal model:
 (δext(si, e, x), sj, autonomous)
 tl=t
 ts=t
 tn=tn
 If((si, sj, autonomous)) then
 current state of the internal model:
 (δext(si, e, x), sj, autonomous)
 tl=t
 tn=t+Max(D(δext(si, e, x)))
 If ((Φ, Φ, passive)) then
 current state of the internal model:
 (Φ, Φ, passive)
 tl=t
 tn=?
end Min_Max_DEVS_Simulator

≠

−
−

−
−

−
−

σ σ
σ σ

σ
σ

σ
σ

σ
σ

σ
σ

ε

σ σ σ σ

εε

Φ Φ

Author Index

Ahn, Hyunchul 409
Ahn, Jon 400
Ahn, Seong jin 597
Akerkar, Salil R. 1
Ameghino, Javier 233
Aung, Khin Mi Mi 607

Baik, Doo-Kwon 470
Baohong, Liu 285
Barros, Fernando 117
Byun, Sangyong 50

Cha, Seung-Lyeol 147
Chang, Heejung 351
Chi, Sung-Do 380, 585
Cho, Beom-Joon 565
Cho, Eun Sook 460
Cho, Haengrae 333, 518
Cho, Kwang-Hyun 428
Cho, Tae Ho 71, 323
Choi, Eunmi 528, 645
Choi, Hoo-Gon 390
Choi, Jong-Hwa 295
Choi, Soon-yong 295
Choy, Yoon-Chul 565
Chung, Jinwok 597
Chung, Kyo-Il 109
Chung, TaeChoong 508

Deguchi, Hiroshi 33, 42, 215

Eom, Jong-hoon 556
Eom, Young Ik 538

Fishwick, Paul 574
Foo, Norman 14, 416
Frydman, Claudia 692, 699

Gerardo, Bobby D. 50
Ghosh, Sumit 270
Giambiasi, Norbert 692, 699
Goel, Amrit L. 440
Green, Thomas W. 147

Hamri, Maâmar El-Amine 699
Han, Chimoon 617

Han, Kyungsook 663
Han, Sang-Ryoul 313
Hirata, Hisao 198
Hong, Ki Jung 275
Hong, Min 673
Hunter, Lawrence 673
Hwang, Ilsung 597
Hwang, Moon Ho 243

Ichikawa, Manabu 33
Im, Sung-Ho 547
Ishiyama, Ko 42

Jammalamadaka, Rajanikanth 1
Jang, Sang Su 100
Jang, Dong Sik 490
Jeon, Heung Seok 683
Jeong, Chang-Sung 188
Jeong, Chi Yoon 617
Jin, Hoon 224
Ju, Byoung-Hyun 663
Jung, Jung-Rae 585
Jung, Min-Suk 556
Jung, Sung Hoon 428
Jung, Sungwon 61

Kang, Hyun-Kyu 360, 683
Kang, Won-Seok 370
Kang, Wonseog 683
Karimpour-Fard, Anis 673
Kedi, Huang 285
Kijima, Kyoichi 198, 262
Kim, Chul Jin 460
Kim, Chung Hwa 498
Kim, Doo Hyun 683
Kim, Eun Yi 100
Kim, Gu Su 538
Kim, Hang Joon 100
Kim, Heung Shik 179
Kim, Hyung-Jong 81, 90
Kim, In-Cheol 224
Kim, Jae-Hyun 128
Kim, Jae-Kyung 565
Kim, Ki-Hyung 313, 370
Kim, Kwanjoong 253
Kim, Kyoung-in 538

710 Author Index

Kim, Kyoung-jae 409
Kim, Siheung 597
Kim, Sung-Ho 556
Kim, Sunghe 597
Kim, Tag Gon 128, 275
Kim, Yun Bae 390
Kitakubo, Takahiro 215
Ko, Byungsun 449
Ko, Myeong-Cheol 360, 683
Koh, Sung Shik 498
Komuro, Shusuke 42
Konno, Naoki 262
Koyama, Yusuke 33, 42, 215
Kwon, JuHum 470
Kwon, Kee-Koo 547
Kwon, Ki-Ryong 481
Kwon, Seong-Geun 481
Kwon, Suhn Beom 157
Kwon, Taekyoung 90

Lee, Chang-Hoon 304
Lee, Chong-Ho 147
Lee, Donghoon 663
Lee, Heesang 390
Lee, Ho Gyun 617
Lee, Hyung-Woo 90
Lee, Jae-Woo 627, 655
Lee, Jaewan 50
Lee, Jang-Se 380, 585
Lee, Jeong-Oog 360, 683
Lee, Jong Sik 138
Lee, Jong-Keun 380
Lee, Jong-Kun 167
Lee, Ju-Hong 207
Lee, Jung-Sik 207
Lee, Kangsun 351
Lee, Kyungtae 24
Lee, Min-Woo 380
Lee, SangHak 508
Lee, Sangho 518
Lee, Suk-Hwan 481
Lee, Tae-Dong 188
Lee, Won Young 323
Lim, Dong-Sun 547
Lim, Gyoo Gun 342
Lim, Soon-Bum 565
Lim, Sungjun 333
Lin, Feng 243

Ma, Jin-Suk 547

Min, Dugki 528, 645
Moon, Chang-Joo 470
Moon, Ho Seok 490

Nah, Jae-Hoon 109
Nam, Taekyong 617
No, Jaechun 400
No, Minki 597

Oh, Ryum-Duck 683
Ohn, Kyungoh 518
Ohn, Syng-Yup 380

Park, Chankwon 61
Park, Ho-Joon 304
Park, Hye Sun 100
Park, Jainyun 449
Park, Jinwoo 61
Park, Jong Sou 607
Park, Jong-Sou 585
Park, Minho 574
Park, Sang-Ho 207
Park, Sangjoon 253
Park, So-Hee 109
Park, Soo-Hyun 342, 470
Park, Sun 207
Peppas, Pavlos 14, 416

Ra, Inho 50
Russell, Steve 673
Ryu, Sang-Ryul 556

Sato, Ryo 635
Sawan, M. Edwin 24
Seck, Mamadou 692
Seo, Hee Suk 323
Seo, Yongwon 61
Seu, Jai Hyun 179
Shim, Kyu-Hong 24
Shin, Dongil 295
Shin, Dongkyoo 295
Shin, Kyung-shik 157
Shin, Miyoung 440
Shin, Soo-Young 342
Sin, Seungchung 597
Sohn, Myung Ho 490
Sohn, Won-Sung 565
Song, Byung-Keun 179

Tanuma, Hideki 33, 42

Author Index 711

Wainer, Gabriel 233

Yang, Man-Seok 547
Yi, Mi Ra 71
Yoo, Seung-Hun 188

Yoon, Sugjoon 400

Youn, Cheong 147

Zeigler, Bernard P. 1

	Frontmatter
	Keynotes
	Continuity and Change (Activity) Are Fundamentally Related in DEVS Simulation of Continuous Systems
	Systems Theory: Melding the AI and Simulation Perspectives

	Modeling and Simulation Methodologies I
	Unified Modeling for Singularly Perturbed Systems by Delta Operators: Pole Assignment Case
	A Disaster Relief Simulation Model of a Building Fire
	Evaluation of Transaction Risks of Mean Variance Model Under Identical Variance of the Rate of Return -- Simulation in Artificial Market

	Intelligent Control
	Association Rule Discovery in Data Mining by Implementing Principal Component Analysis
	Reorder Decision System Based on the Concept of the Order Risk Using Neural Networks
	Simulation Modeling with Hierarchical Planning: Application to a Metal Manufacturing System

	Computer and Network Security I
	Vulnerability Modeling and Simulation for DNS Intrusion Tolerance System Construction
	NS-2 Based IP Traceback Simulation Against Reflector Based DDoS Attack
	Recognition of Human Action for Game System
	The Implementation of IPsec-Based Internet Security System in IPv4/IPv6 Network

	HLA and Simulator Interoperation
	Describing the HLA Using the DFSS Formalism
	Proposal of High Level Architecture Extension
	High Performance Modeling for Distributed Simulation
	The Hierarchical Federation Architecture for the Interoperability of ROK and US Simulations

	Manufacturing
	PPSS: CBR System for ERP Project Pre-planning
	A Scheduling Analysis in FMS Using the Transitive Matrix
	Simulation of Artificial Life Model in Game Space
	An Extensible Framework for Advanced Distributed Virtual Environment on Grid

	Agent-Based Modeling
	Diffusion of Word-of-Mouth in Segmented Society: Agent-Based Simulation Approach
	E-mail Classification Agent Using Category Generation and Dynamic Category Hierarchy
	The Investigation of the Agent in the Artificial Market
	Plan-Based Coordination of a Multi-agent System for Protein Structure Prediction

	DEVS Modeling and Simulation
	Using Cell-DEVS for Modeling Complex Cell Spaces
	State Minimization of SP-DEVS
	DEVS Formalism: A Hierarchical Generation Scheme

	Modeling and Simulation Methodologies II
	Does Rational Decision Making Always Lead to High Social Welfare?
	Large-Scale Systems Design: A Revolutionary New Approach in Software Hardware Co-design
	Timed I/O Test Sequences for Discrete Event Model Verification

	Parallel and Distributed Modeling and Simulation I
	A Formal Description Specification for Multi-resolution Modeling (MRM) Based on DEVS Formalism
	Research and Implementation of the Context-Aware Middleware Based on Neural Network
	An Efficient Real-Time Middleware Scheduling Algorithm for Periodic Real-Time Tasks
	Mapping Cooperating GRID Applications by Affinity for Resource Characteristics

	Mobile Computer Network
	Modeling of Policy-Based Network with SVDB
	Timestamp Based Concurrency Control in Broadcast Disks Environment
	Active Information Based RRK Routing for Mobile Ad Hoc Network

	Web-Based Simulation, Natural System
	Applying Web Services and Design Patterns to Modeling and Simulating Real-World Systems
	Ontology Based Integration of Web Databases by Utilizing Web Interfaces
	A Web Services-Based Distributed Simulation Architecture for Hierarchical DEVS Models

	Modeling and Simulation Environments
	Automated Cyber-attack Scenario Generation Using the Symbolic Simulation
	A Discrete Event Simulation Study for Incoming Call Centers of a Telecommunication Service Company
	Requirements Analysis and a Design of Computational Environment for HSE (Human-Sensibility Ergonomics) Simulator

	AI and Simulation
	Using a Clustering Genetic Algorithm to Support Customer Segmentation for Personalized Recommender Systems
	System Properties of Action Theories
	Identification of Gene Interaction Networks Based on Evolutionary Computation

	Component-Based Modeling
	Modeling Software Component Criticality Using a Machine Learning Approach
	Component Architecture Redesigning Approach Using Component Metrics
	A Workflow Variability Design Technique for Dynamic Component Integration

	Watermarking, Semantic
	Measuring Semantic Similarity Based on Weighting Attributes of Edge Counting
	3D Watermarking Shape Recognition System Using Normal Vector Distribution Modelling
	DWT-Based Image Watermarking for Copyright Protection
	Cropping, Rotation and Scaling Invariant LBX Interleaved Voice-in-Image Watermarking

	Parallel and Distributed Modeling and Simulation II
	Data Aggregation for Wireless Sensor Networks Using Self-organizing Map
	Feasibility and Performance Study of a Shared Disks Cluster for Real-Time Processing
	A Web Cluster Simulator for Performance Analysis of the ALBM Cluster System
	Dynamic Load Balancing Scheme Based on Resource Reservation for Migration of Agent in the Pure P2P Network Environment

	Visualization, Graphics and Animation I
	Application of Feedforward Neural Network for the Deblocking of Low Bit Rate Coded Images
	A Dynamic Bandwidth Allocation Algorithm with Supporting QoS for EPON
	A Layered Scripting Language Technique for Avatar Behavior Representation and Control
	An Integrated Environment Blending Dynamic and Geometry Models

	Computer and Network Security II
	Linux-Based System Modelling for Cyber-attack Simulation
	A Rule Based Approach to Network Fault and Security Diagnosis with Agent Collaboration
	Transient Time Analysis of Network Security Survivability Using DEVS
	A Harmful Content Protection in Peer-to-Peer Networks

	Business Modeling
	Security Agent Model Using Interactive Authentication Database
	Discrete-Event Semantics for Tools for Business Process Modeling in Web-Service Era
	An Architecture Modelling of a Workflow Management System
	Client Authentication Model Using Duplicated Authentication Server Systems

	Visualization, Graphics and Animation II
	Dynamic Visualization of Signal Transduction Pathways from Database Information
	Integrated Term Weighting, Visualization, and User Interface Development for Bioinformation Retrieval
	CONDOCS: A Concept-Based Document Categorization System Using Concept-Probability Vector with Thesaurus

	DEVS Modeling and Simulation
	Using DEVS for Modeling and Simulation of Human Behaviour
	Simulation Semantics for Min-Max DEVS Models

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

